Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0305569, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38889158

RESUMO

Francisella tularensis, the causative agent of tularemia, is divided into three subspecies. Two of these, subspecies holarctica and tularensis, are highly pathogenic to humans and consequently relatively well studied. The third subspecies, mediasiatica, is rarely isolated and remains poorly studied. It is distributed in the sparsely populated regions of Central Asia and Siberia. Curently this subspecies is not known to have been responsible for human infections in spite of its high virulence in laboratory animals. Subspecies mediasiatica is currently divided into three subgroups-MI, present in Central Asia, MII, present in southern Siberia, and MIII represented by a unique strain, 60(B)57, isolated in Uzbekistan in 1960. We describe here the unexpected observation that MIII strain 60(B)57 is avirulent and immunogenic. We observed that infection with this strain protected mice from challenge 21 days later with a virulent subsp. mediasiatica strain. With an increase of this interval, the protection for mice was significantly reduced. In contrast, guinea pigs were protected from challenge with strains of the subspecies holarctica and mediasiatica (but not subsp. tularensis) 90 days after infection with 60(B)57. We performed genome assembly based on whole genome sequencing data obtained using the Nanopore MinION for strain 60(B)57 and two subsp. mediasiatica strains representing the Central Asian MI and Siberian MII phylogenetic subgroups. The prmA gene is truncated due to a nonsense mutation in strain 60(B)57. The deletion of gene prmA has previously been shown to induce a loss of virulence in Francisella novicida the closest model organism suggesting that the observed mutation might the cause of the avirulence of strain 60(B)57.


Assuntos
Francisella tularensis , Tularemia , Animais , Francisella tularensis/genética , Francisella tularensis/patogenicidade , Camundongos , Virulência/genética , Tularemia/microbiologia , Cobaias , Mutação , Feminino , Proteínas de Bactérias/genética
2.
Pathogens ; 12(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37887773

RESUMO

Anthrax is a particularly dangerous infection of humans and ungulates caused by the Gram-positive spore-forming bacterium Bacillus anthracis. The highly monomorphic and clonal species B. anthracis is commonly divided into three main lineages, A, B, and C, which in turn are divided into several canSNP groups. We report here a phylogenetic analysis based on the whole-genome sequence (WGS) data of fifteen strains isolated predominantly in Siberia or Central and Southern Russia. We confirm the wide distribution of the cluster of strains of the B.Br.001/002 group, endemic to the Russian Arctic, which is also present in the steppe zone of Southern Siberia. We characterize additional branches within the major A.Br.001/002 polytomy comprising the A.Br.Ames and A.Br.Sterne lineages, one of which is identified in the Arctic.

3.
Vaccines (Basel) ; 10(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36366362

RESUMO

BACKGROUND: Shiga toxin-producing Escherichia coli (STEC) O157:H7 and O104:H4 strains are important causative agents of food-borne diseases such as hemorrhagic colitis and hemolytic-uremic syndrome, which is the leading cause of kidney failure and death in children under 5 years as well as in the elderly. METHODS: the native E. coli O157:H7 and O104:H4 lipopolysaccharides (LPS) were partially deacylated under alkaline conditions to obtain apyrogenic S-LPS with domination of tri-acylated lipid A species-Ac3-S-LPS. RESULTS: intraperitoneal immunization of BALB/c mice with Ac3-S-LPS antigens from E. coli O157:H7 and O104:H4 or combination thereof (di-vaccine) at single doses ranging from 25 to 250 µg induced high titers of serum O-specific IgG (mainly IgG1), protected animals against intraperitoneal challenge with lethal doses of homologous STEC strains (60-100% survival rate) and reduced the E. coli O157:H7 and O104:H4 intestinal colonization under an in vivo murine model (6-8-fold for monovalent Ac3-S-LPS and 10-fold for di-vaccine). CONCLUSIONS: Di-vaccine induced both systemic and intestinal anti-colonization immunity in mice simultaneously against two highly virulent human STEC strains. The possibility of creating a multivalent STEC vaccine based on safe Ac3-S-LPS seems to be especially promising due to a vast serotype diversity of pathogenic E. coli.

4.
Virus Res ; 322: 198951, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36191686

RESUMO

Bacteriophages and phage polysaccharide-degrading enzymes (depolymerases) are garnering attention as possible alternatives to antibiotics. Here, we describe the antimicrobial properties of bacteriophage KpV74 and phage depolymerase Dep_kpv74 specific to the hypervirulent Klebsiella pneumoniae of the K2 capsular type. The depolymerase Dep_kpv74 was identified as a specific glucosidase that cleaved the K2 type capsular polysaccharides of the K. pneumoniae by a hydrolytic mechanism. This depolymerase was effective against thigh soft tissue K. pneumoniae infection in mice without inducing adverse behavioral effects or toxicity. The depolymerase efficiency was similar to or greater than the bacteriophage efficiency. The phage KpV74 had a therapeutic effect only for treating the infection caused by the phage-propagating K. pneumoniae strain and was completely inactive against the infection caused by the K. pneumoniae strain that did not support phage multiplication. The depolymerase was effective in both cases. A mutant resistant to phage and depolymerase was isolated during the treatment of mice with bacteriophage. A confirmed one-base deletion in the flippase-coding wzx gene of this mutant is assumed to affect the polysaccharide capsule, abolishing the KpV74 phage adsorption and reducing the K. pneumoniae virulence.


Assuntos
Bacteriófagos , Klebsiella pneumoniae , Animais , Camundongos , Antibacterianos/farmacologia , beta-Glucosidase , Klebsiella pneumoniae/genética
5.
Antibiotics (Basel) ; 11(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36290074

RESUMO

Hybrid diarrheagenic E. coli strains combining genetic markers belonging to different pathotypes have emerged worldwide and have been reported as a public health concern. The most well-known hybrid strain of enteroaggregative hemorrhagic E. coli is E. coli O104:H4 strain, which was an agent of a serious outbreak of acute gastroenteritis and hemolytic uremic syndrome (HUS) in Germany in 2011. A case of intestinal infection with HUS in St. Petersburg (Russian Federation) occurred in July 2018. E. coli strain SCPM-O-B-9427 was obtained from the rectal swab of the patient with HUS. It was determined as O181:H4-, stx2-, and aggR-positive and belonged to the phylogenetic group B2. The complete genome assembly of the strain SCPM-O-B-9427 contained one chromosome and five plasmids, including the plasmid coding an aggregative adherence fimbriae I. MLST analysis showed that the strain SCPM-O-B-9427 belonged to ST678, and like E. coli O104:H4 strains, 2011C-3493 caused the German outbreak in 2011, and 2009EL-2050 was isolated in the Republic of Georgia in 2009. Comparison of three strains showed almost the same structure of their chromosomes: the plasmids pAA and the stx2a phages are very similar, but they have distinct sets of the plasmids and some unique regions in the chromosomes.

6.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35163756

RESUMO

The increasing antibiotic resistance is a clinical problem worldwide. Numerous Gram-negative bacteria have already become resistant to the most widely used class of antibacterial drugs, ß-lactams. One of the main mechanisms is inactivation of ß-lactam antibiotics by bacterial ß-lactamases. Appearance and spread of these enzymes represent a continuous challenge for the clinical treatment of infections and for the design of new antibiotics and inhibitors. Drug repurposing is a prospective approach for finding new targets for drugs already approved for use. We describe here the inhibitory potency of known detoxifying antidote 2,3-dimercaptopropane-1-sulfonate (unithiol) against metallo-ß-lactamases. Unithiol acts as a competitive inhibitor of meropenem hydrolysis by recombinant metallo-ß-lactamase NDM-1 with the KI of 16.7 µM. It is an order of magnitude lower than the KI for l-captopril, the inhibitor of angiotensin-converting enzyme approved as a drug for the treatment of hypertension. Phenotypic methods demonstrate that the unithiol inhibits natural metallo-ß-lactamases NDM-1 and VIM-2 produced by carbapenem-resistant K. pneumoniae and P. aeruginosa bacterial strains. The 3D full atom structures of unithiol complexes with NDM-1 and VIM-2 are obtained using QM/MM modeling. The thiol group is located between zinc cations of the active site occupying the same place as the catalytic hydroxide anion in the enzyme-substrate complex. The sulfate group forms both a coordination bond with a zinc cation and hydrogen bonds with the positively charged residue, lysine or arginine, responsible for proper orientation of antibiotics upon binding to the active site prior to hydrolysis. Thus, we demonstrate both experimentally and theoretically that the unithiol is a prospective competitive inhibitor of metallo-ß-lactamases and it can be utilized in complex therapy together with the known ß-lactam antibiotics.


Assuntos
Klebsiella pneumoniae/enzimologia , Pseudomonas aeruginosa/enzimologia , Unitiol/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Carbapenêmicos/farmacologia , Reposicionamento de Medicamentos , Farmacorresistência Bacteriana/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Modelos Moleculares , Conformação Proteica , Pseudomonas aeruginosa/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade , beta-Lactamases/química
7.
Vaccines (Basel) ; 10(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35062769

RESUMO

The genomic analysis of all subspecies F. tularensis, as found in Gen Bank NCBI, reveals the presence of genes encoding proteins like to the multifunctional RecBCD enzyme complex in E. coli and other bacteria. To date, the role of the recD gene in F. tularensis, which encodes the alpha chain of exonuclease V, in DNA metabolism processes, has not been studied either in vitro or in vivo. F. tularensis subsp. holarctica 15 NIIEG, a vaccine strain, served as the basis to create the F. tularensis 15D strain with recD deletion. The lack of the recD gene suppresses the integration of suicide plasmids with F. tularensis genome fragments into the chromosome. The modified strain showed reduced growth in vitro and in vivo. This study shows that such deletion significantly reduces the virulence of the strain in BALB/c mice.

8.
PLoS One ; 16(12): e0260202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34928976

RESUMO

Live anthrax vaccine containing spores from attenuated strains STI-1 of Bacillus anthracis is used in Russia and former CIS (Commonwealth of Independent States) to prevent anthrax. In this paper we studied the duration of circulation of antibodies specific to spore antigens, the protective antigen (PA), the lethal factor (LF) and their domains (D) in donors' blood at different times after their immunization with live anthrax vaccine. The relationship between the toxin neutralization activity level and the level of antibodies to PA, LF and their domains was tested. The effect of age, gender and number of vaccinations on the level of adaptive post-vaccination immune response has been studied. It was shown that antibodies against PA-D1 circulate in the blood of donors for 1 year or more after immunization with live anthrax vaccine. Antibodies against all domains of LF and PA-D4 were detected in 11 months after vaccination. Antibodies against the spores were detected in 8 months after vaccination. A moderate positive correlation was found between the titers of antibodies to PA, LF, or their domains, and the TNA of the samples of blood serum from the donors.


Assuntos
Imunidade Adaptativa , Vacinas contra Antraz/imunologia , Antraz/imunologia , Antraz/prevenção & controle , Vacinas contra Antraz/administração & dosagem , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Doadores de Sangue , Humanos , Testes de Neutralização , Federação Russa , Esporos Bacterianos/imunologia , Vacinação
9.
Pathogens ; 10(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34959512

RESUMO

The main pathogenic factor of Bacillus anthracis is a three-component toxin encoded by the pagA, lef, and cya genes, which are located on the pXO1 plasmid. The atxA gene, which encodes the primary regulator of pathogenicity factor expression, is located on the same plasmid. In this work, we evaluated the polymorphism of the pagA, lef, cya, and atxA genes for 85 B. anthracis strains from different evolutionary lineages and canSNP groups. We have found a strong correlation of 19 genotypes with the main evolutionary lineages, but the correlation with the canSNP group of the strain was not as strong. We have detected several genetic markers indicating the geographical origin of the strains, for example, their source from the steppe zone of the former USSR. We also found that strains of the B.Br.001/002 group caused an anthrax epidemic in Russia in 2016 and strains isolated during paleontological excavations in the Russian Arctic have the same genotype as the strains of the B.Br.CNEVA group circulating in Central Europe. This data could testify in favor of the genetic relationship of these two groups of strains and hypothesize the ways of distribution of their ancestral forms between Europe and the Arctic.

10.
Front Microbiol ; 12: 669618, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434173

RESUMO

Antibiotic resistance is a major public health concern in many countries worldwide. The rapid spread of multidrug-resistant (MDR) bacteria is the main driving force for the development of novel non-antibiotic antimicrobials as a therapeutic alternative. Here, we isolated and characterized three virulent bacteriophages that specifically infect and lyse MDR Klebsiella pneumoniae with K23 capsule type. The phages belonged to the Autographiviridae (vB_KpnP_Dlv622) and Myoviridae (vB_KpnM_Seu621, KpS8) families and contained highly similar receptor-binding proteins (RBPs) with polysaccharide depolymerase enzymatic activity. Based on phylogenetic analysis, a similar pattern was also noted for five other groups of depolymerases, specific against capsule types K1, K30/K69, K57, K63, and KN2. The resulting recombinant depolymerases Dep622 (phage vB_KpnP_Dlv622) and DepS8 (phage KpS8) demonstrated narrow specificity against K. pneumoniae with capsule type K23 and were able to protect Galleria mellonella larvae in a model infection with a K. pneumoniae multidrug-resistant strain. These findings expand our knowledge of the diversity of phage depolymerases and provide further evidence that bacteriophages and phage polysaccharide depolymerases represent a promising tool for antimicrobial therapy.

11.
Antibiotics (Basel) ; 10(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34439029

RESUMO

The purpose of this study was the identification of genetic lineages and antimicrobial resistance (AMR) and virulence genes in Klebsiella pneumoniae isolates associated with severe infections in the neuro-ICU. Susceptibility to antimicrobials was determined using the Vitek-2 instrument. AMR and virulence genes, sequence types (STs), and capsular types were identified by PCR. Whole-genome sequencing was conducted on the Illumina MiSeq platform. It was shown that K. pneumoniae isolates of ST14K2, ST23K57, ST39K23, ST76K23, ST86K2, ST218K57, ST219KL125/114, ST268K20, and ST2674K47 caused severe systemic infections, including ST14K2, ST39K23, and ST268K20 that were associated with fatal incomes. Moreover, eight isolates of ST395K2 and ST307KL102/149/155 were associated with manifestations of vasculitis and microcirculation disorders. Another 12 K. pneumoniae isolates of ST395K2,KL39, ST307KL102/149/155, and ST147K14/64 were collected from patients without severe systemic infections. Major isolates (n = 38) were XDR and MDR. Beta-lactamase genes were identified: blaSHV (n = 41), blaCTX-M (n = 28), blaTEM (n = 21), blaOXA-48 (n = 21), blaNDM (n = 1), and blaKPC (n = 1). The prevalent virulence genes were wabG (n = 41), fimH (n = 41), allS (n = 41), and uge (n = 34), and rarer, detected only in the genomes of the isolates causing severe systemic infections-rmpA (n = 8), kfu (n = 6), iroN (n = 5), and iroD (n = 5) indicating high potential of the isolates for hypervirulence.

12.
Microorganisms ; 9(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34442871

RESUMO

Mycobacterium tuberculosis Beijing genotype associated with drug resistance is a growing public health problem worldwide. The aim of this study was the assessment of virulence for C57BL/6 mice after infection by clinical M. tuberculosis strains 267/47 and 120/26, which belong to the modern sublineages B0/W148 and Central Asia outbreak of the Beijing genotype, respectively. The sublineages were identified by the analysis of the strains' whole-genomes. The strains 267/47 and 120/26 were characterized as agents of pre-extensively drug-resistant (pre-XDR) and multidrug-resistant (MDR) tuberculosis, respectively. Both clinical strains were slow-growing in 7H9 broth compared to the M. tuberculosis H37Rv strain. The survival rates of C57BL/6 mice infected by 267/47, 120/26, and H37Rv on the 150th day postinfection were 10%, 40%, and 70%, respectively. Mycobacterial load in the lungs, spleen, and liver was higher and histopathological changes were more expressed for mice infected by the 267/47 strain compared to those infected by the 120/26 and H37Rv strains. The cytokine response in the lungs of C57BL/6 mice after infection with the 267/47, 120/26, and H37Rv strains was different. Notably, proinflammatory cytokine genes Il-1α, Il-6, Il-7, and Il-17, as well as anti-inflammatory genes Il-6 and Il-13, were downregulated after an infection caused by the 267/47 strain compared to those after infection with the H37Rv strain.

13.
ACS Appl Mater Interfaces ; 13(20): 23452-23468, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34000197

RESUMO

Utilization of antibacterial components-conjugated nanoparticles (NPs) is emerging as an attractive strategy for combating various pathogens. Herein, we demonstrate that Ag/BN NPs and antibiotic-loaded BN and Ag/BN nanoconjugates are promising carriers to fight bacterial and fungal infections. Extensive biological tests included two types of Gram-positive methicillin-resistant Staphylococcus aureus strains (B8469 and MW2), two types of Gram-negative Pseudomonas aeruginosa strains (ATCC27853 and B1307/17), and 47 types of Escherichia coli strains (including 41 multidrug-resistant ones), as well as five types of fungal cultures: Candida albicans (candidiasis-thrush) ATCC90028 and ATCC24433, Candida parapsilosis ATCC90018, Candida auris CBS109113, and Neurospora crassa wt. We have demonstrated that, even within a single genus Escherichia, there are many hospital E. coli strains with multi-drug resistance to different antibiotics. Gentamicin-loaded BN NPs have high bactericidal activity against S. aureus, P. aeruginosa, and 38 types of the E. coli strains. For the rest of the tested E. coli strains, the Ag nanoparticle-containing nanohybrids have shown superior bactericidal efficiency. The Ag/BN nanohybrids and amphotericin B-loaded BN and Ag/BN NPs also reveal high fungicidal activity against C. albicans, C. auris, C. parapsilosis, and N. crassa cells. In addition, based on the density functional theory calculations, the nature of antibiotic-nanoparticle interaction, the sorption capacity of the BN and Ag/BN nanohybrids for gentamicin and amphotericin B, and the most energetically favorable positions of the drug molecules relative to the carrier surface, which lead to lowest binding energies, have been determined. The obtained results clearly show high therapeutic potential of the antibiotic-loaded Ag/BN nanocarriers providing a broad bactericidal and fungicidal protection against all of the studied pathogens.


Assuntos
Antibacterianos , Compostos de Boro/química , Portadores de Fármacos/química , Nanopartículas/química , Prata/química , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Candida/efeitos dos fármacos , Gentamicinas/química , Gentamicinas/farmacologia
14.
Antibiotics (Basel) ; 11(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35052884

RESUMO

Klebsiella pneumoniae is an increasingly important hospital pathogen. Classical K. pneumoniae (cKp) and hypervirulent K. pneumoniae (hvKp) are two distinct evolutionary genetic lines. The recently ongoing evolution of K. pneumoniae resulted in the generation of hybrid hvKP-MDR strains. K. pneumoniae distinct isolates (n = 70) belonged to 20 sequence types with the prevalence of ST395 (27.1%), ST23 (18.6%), ST147 (15.7%), and ST86 (7.1%), and 17 capsular types with the predominance of K2 (31.4%), K57 (18.6%), K64 (10.0%), K1 (5.7%) were isolated from patients of the Moscow neurosurgery ICU in 2014-2019. The rate of multi-drug resistant (MDR) and carbapenem-resistant phenotypes were 84.3% and 45.7%, respectively. Whole-genome sequencing of five selected strains belonging to cKp (ST395K47 and ST147K64), hvKp (ST86K2), and hvKp-MDR (ST23K1 and ST23K57) revealed blaSHV, blaTEM, blaCTX, blaOXA-48, and blaNDM beta-lactamase genes; acr, oqx, kpn, kde, and kex efflux genes; and K. pneumoniae virulence genes. Selective pressure of 100 mg/L ampicillin or 10 mg/L ceftriaxone induced changes of expression levels for named genes in the strains belonging to cKp, hvKp, and hybrid hvKp-MDR. Obtained results seem to be important for epidemiologists and clinicians for enhancing knowledge about hospital pathogens.

15.
Microorganisms ; 8(9)2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932593

RESUMO

Tularemia is a severe infectious disease caused by the Gram-negative bacteria Fracisella tularensis. There are four subspecies of F.tularensis: holarctica, tularensis, mediasiatica, and novicida, which differ in their virulence and geographic distribution. One of them, subsp. mediasiatica remains extremely poorly studied, primarily due to the fact that it is found only in the sparsely populated regions of Central Asia and Russia. In particular there is little information in the literature on the virulence and pathogenicity of subsp. mediasiatica. In the present article, we evaluated the comparative virulence of subsp. mediasiatica in vaccinated laboratory animals which we infected with virulent strains: subsp. mediasiatica 678, subsp. holarctica 503, and subsp. tularensis SCHU within 60 to 180 days after vaccination. We found that subsp. mediasiatica is comparable in pathogenicity in mice with subsp. tularensis and in guinea pigs with subsp. holarctica. We also found that the live vaccine does not fully protect mice from subsp. mediasiatica but completely protects guinea pigs for at least six months. In general, our data suggest that subsp. mediasiatica occupies an intermediate position in virulence between spp. tularensis and holarctica.

16.
Pathogens ; 9(5)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365818

RESUMO

The Central Asia Outbreak (CAO) clade is a growing public health problem for Central Asian countries. Members of the clade belong to the narrow branch of the Mycobacterium tuberculosis Beijing genotype and are characterized by multidrug resistance and increased transmissibility. The Rostov strain of M. tuberculosis isolated in Russia and attributed to the CAO clade based on PCR-assay and whole genome sequencing and the laboratory strain H37Rv were selected to evaluate the virulence on C57Bl/6 mice models by intravenous injection. All mice infected with the Rostov strain succumbed to death within a 48-day period, while more than half of the mice infected by the H37Rv strain survived within a 90-day period. Mice weight analysis revealed irreversible and severe depletion of animals infected with the Rostov strain compared to H37Rv. The histological investigation of lung and liver tissues of mice on the 30th day after injection of mycobacterial bacilli showed that the pattern of pathological changes generated by two strains were different. Moreover, bacterial load in the liver and lungs was higher for the Rostov strain infection. In conclusion, our data demonstrate that the drug-resistant Rostov strain exhibits a highly virulent phenotype which can be partly explained by the CAO-specific mutations.

17.
Microbiol Resour Announc ; 9(7)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054705

RESUMO

We report the draft genome sequences of three Francisella tularensis subsp. mediasiatica strains isolated in the Altai Territory, Russian Federation.

18.
Genome Announc ; 6(21)2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29798917

RESUMO

Two lytic double-stranded DNA bacteriophages, VSe11 and VSe102, infecting broad-spectrum Salmonella enterica were isolated from the sewage of two different poultry farms. The phage genomes comprise 86,360 bp and 86,365 bp, respectively, with a G+C content of 39.0%, and both contain 129 putative coding sequences.

19.
Genome Announc ; 6(5)2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29437105

RESUMO

We report here the draft genome sequences of eight Staphylococcus aureus strains isolated during three large food poisoning outbreaks in the Russian Federation. The strains were collected from clinical specimens and various foodstuff samples.

20.
PLoS One ; 12(9): e0183714, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28873421

RESUMO

Francisella tularensis, a small Gram-negative bacterium, is capable of infecting a wide range of animals, including humans, and causes a plague-like disease called tularemia-a highly contagious disease with a high mortality rate. Because of these characteristics, F. tularensis is considered a potential agent of biological terrorism. Currently, F. tularensis is divided into four subspecies, which differ in their virulence and geographic distribution. Two of them, subsp. tularensis (primarily found in North America) and subsp. holarctica (widespread across the Northern Hemisphere), are responsible for tularemia in humans. Subsp. novicida is almost avirulent in humans. The fourth subspecies, subsp. mediasiatica, is the least studied because of its limited distribution and impact in human health. It is found only in sparsely populated regions of Central Asia. In this report, we describe the first focus of naturally circulating F. tularensis subsp. mediasiatica in Russia. We isolated and characterized 18 strains of this subspecies in the Altai region. All strains were highly virulent in mice. The virulence of subsp. mediasiatica in a vaccinated mouse model is intermediate between that of subsp. tularensis and subsp. holarctica. Based on a multiple-locus variable number tandem repeat analysis (MLVA), we show that the Altaic population of F. tularensis subsp. mediasiatica is genetically distinct from the classical Central Asian population, and probably is endemic to Southern Siberia. We propose to subdivide the mediasiatica subspecies into three phylogeographic groups, M.I, M.II and M.III.


Assuntos
Biodiversidade , Francisella tularensis/genética , Francisella tularensis/patogenicidade , Tularemia/microbiologia , Alelos , Animais , Citrulina/química , Análise por Conglomerados , Feminino , Genótipo , Geografia , Glicerol/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Repetições Minissatélites , Filogeografia , Polimorfismo de Nucleotídeo Único , Federação Russa , Células-Tronco , Vacinação , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...