RESUMO
Venezuelan equine encephalitis virus (VEEV) is an encephalitic alphavirus that can cause debilitating, acute febrile illness and potentially result in encephalitis. Currently, there are no FDA-licensed vaccines or specific therapeutics for VEEV. Previous studies have demonstrated that VEEV infection results in increased blood-brain barrier (BBB) permeability that is mediated by matrix metalloproteinases (MMPs). Furthermore, after subarachnoid hemorrhage in mice, MMP-9 is upregulated in the brain and mediates BBB permeability in a toll-like receptor 4 (TLR4)-dependent manner. Here, we demonstrate that disease in C3H mice during VEEV TC-83 infection is dependent on TLR4 because intranasal infection of C3H/HeN (TLR4 WT ) mice with VEEV TC-83 resulted in mortality as opposed to survival of TLR4-defective C3H/HeJ (TLR4 mut ) mice. In addition, BBB permeability was induced to a lesser extent in TLR4 mut mice compared with TLR4 WT mice during VEEV TC-83 infection as determined by sodium fluorescein and fluorescently-conjugated dextran extravasation. Moreover, MMP-9, MMP-2, ICAM-1, CCL2 and IFN-γ were all induced to significantly lower levels in the brains of infected TLR4 mut mice compared with infected TLR4 WT mice despite the absence of significantly different viral titers or immune cell populations in the brains of infected TLR4 WT and TLR4 mut mice. These data demonstrate the critical role of TLR4 in mediating BBB permeability and disease in C3H mice during VEEV TC-83 infection, which suggests that TLR4 is a potential target for the development of therapeutics for VEEV.
Assuntos
Barreira Hematoencefálica/metabolismo , Vírus da Encefalite Equina Venezuelana/patogenicidade , Receptor 4 Toll-Like/genética , Animais , Encéfalo/virologia , Modelos Animais de Doenças , Vírus da Encefalite Equina Venezuelana/imunologia , Encefalomielite Equina Venezuelana/virologia , Feminino , Camundongos , Camundongos Endogâmicos C3H , Permeabilidade , Receptor 4 Toll-Like/metabolismo , Replicação ViralRESUMO
There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine.
Assuntos
Ebolavirus/imunologia , Vírus da Encefalite Equina Venezuelana/genética , Doença pelo Vírus Ebola/prevenção & controle , Replicon , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Ebolavirus/genética , Vírus da Encefalite Equina Venezuelana/fisiologia , Vetores Genéticos/genética , Vetores Genéticos/fisiologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Humanos , Macaca fascicularis , Vacinação , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genéticaRESUMO
Infection with Ebola virus causes a severe disease accompanied by high mortality rates, and there are no licensed vaccines or therapies available for human use. Filovirus vaccine research efforts still need to determine the roles of humoral and cell-mediated immune responses in protection from Ebola virus infection. Previous studies indicated that exposure to Ebola virus proteins expressed from packaged Venezuelan equine encephalitis virus replicons elicited protective immunity in mice and that antibody-mediated protection could only be demonstrated after vaccination against the glycoprotein. In this study, the murine CD8(+) T-cell responses to six Ebola virus proteins were examined. CD8(+) T cells specific for Ebola virus glycoprotein, nucleoprotein, and viral proteins (VP24, VP30, VP35, and VP40) were identified by intracellular cytokine assays using splenocytes from vaccinated mice. The cells were expanded by restimulation with peptides and demonstrated cytolytic activity. Adoptive transfer of the CD8(+) cytotoxic T cells protected filovirus naïve mice from challenge with Ebola virus. These data support a role for CD8(+) cytotoxic T cells as part of a protective mechanism induced by vaccination against six Ebola virus proteins and provide additional evidence that cytotoxic T-cell responses can contribute to protection from filovirus infections.