Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Osteoporos ; 2016: 5925380, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27642534

RESUMO

Although it is recognized that the mechanical stresses associated with physical activity augment bone mineral density and improve bone quality, our understanding of how exercise modulates bone homeostasis at the molecular level is lacking. In a before and after trial involving 43 healthy adults, we measured the effect of six months of supervised exercise training on the spontaneous and phytohemagglutinin-induced production of osteoclastogenic cytokines (interleukin-1α, tumor necrosis factor-α), antiosteoclastogenic cytokines (transforming growth factor-ß1 and interleukins 4 and 10), pleiotropic cytokines with variable effects on osteoclastogenesis (interferon-γ, interleukin-6), and T cell growth and differentiation factors (interleukins 2 and 12) by peripheral blood mononuclear cells. We also measured lymphocyte phenotypes and serum markers of bone formation (osteocalcin), bone resorption (C-terminal telopeptides of Type I collagen), and bone homeostasis (25 (OH) vitamin D, estradiol, testosterone, parathyroid hormone, and insulin-like growth factor 1). A combination of aerobic, resistance, and flexibility exercises done on average of 2.5 hours a week attenuated the production of osteoclastogenic cytokines and enhanced the production of antiosteoclastogenic cytokines. These changes were accompanied by a 16% reduction in collagen degradation products and a 9.8% increase in osteocalcin levels. We conclude that long-term moderate intensity exercise exerts a favorable effect on bone resorption by changing the balance between blood mononuclear cells producing osteoclastogenic cytokines and those producing antiosteoclastogenic cytokines. This trial is registered with Clinical Trials.gov Identifier: NCT02765945.

2.
Med Sci Sports Exerc ; 42(1): 96-106, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20010125

RESUMO

PURPOSE: To determine whether cycle training of sedentary subjects would increase the expression of the principle muscle glucose transporters, six volunteers completed 6 wk of progressively increasing intensity stationary cycle cycling. METHODS: In vastus lateralis muscle biopsies, changes in expression of GLUT1, GLUT4, GLUT5, and GLUT12 were compared using quantitative immunoblots with specific protein standards. Regulatory pathway components were evaluated by immunoblots of muscle homogenates and immunohistochemistry of microscopic sections. RESULTS: GLUT1 was unchanged, GLUT4 increased 66%, GLUT12 increased 104%, and GLUT5 decreased 72%. A mitochondrial marker (cytochrome c) and regulators of mitochondrial biogenesis (peroxisome proliferator-activated receptor gamma coactivator 1 alpha and phospho-5'-adenosine monophosphate-activated protein kinase) were unchanged, but the muscle hypertrophy pathway component, phospho-mammalian target of rapamycin (mTOR), increased 83% after the exercise program. In baseline biopsies, GLUT4 by immunohistochemical techniques was 37% greater in Type I (slow twitch, red) muscle fibers, but the exercise training increased GLUT4 expression in Type II (fast twitch, white) fibers by 50%, achieving parity with the Type I fibers. Baseline phospho-mTOR expression was 50% higher in Type II fibers and increased more in Type II fibers (62%) with training but also increased in Type I fibers (34%). CONCLUSION: Progressive intensity stationary cycle training of previously sedentary subjects increased muscle insulin-responsive glucose transporters (GLUT4 and GLUT12) and decreased the fructose transporter (GLUT5). The increase in GLUT4 occurred primarily in Type II muscle fibers, and this coincided with activation of the mTOR muscle hypertrophy pathway. There was little impact on Type I fiber GLUT4 expression and no evidence of change in mitochondrial biogenesis.


Assuntos
Ciclismo/fisiologia , Transportador de Glucose Tipo 4/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Biópsia , Citocromos c/metabolismo , Feminino , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 5/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Immunoblotting , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Serina-Treonina Quinases TOR , Fatores de Transcrição/metabolismo
3.
Am J Physiol Endocrinol Metab ; 291(5): E1067-73, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16803853

RESUMO

In the past few years, 8 additional members of the facilitative hexose transporter family have been identified, giving a total of 14 members of the SLC2A family of membrane-bound hexose transporters. To determine which of the new hexose transporters were expressed in muscle, mRNA concentrations of 11 glucose transporters (GLUTs) were quantified and compared. RNA from muscle from 10 normal volunteers was subjected to RT-PCR. Primers were designed that amplified 78- to 241-base fragments, and cDNA standards were cloned for GLUT1, GLUT2, GLUT3, GLUT4, GLUT5, GLUT6, GLUT8, GLUT9, GLUT10, GLUT11, GLUT12, and GAPDH. Seven of these eleven hexose transporters were detectable in normal human muscle. The rank order was GLUT4, GLUT5, GLUT12, GLUT8, GLUT11, GLUT3, and GLUT1, with corresponding concentrations of 404 +/- 49, 131 +/- 14, 33 +/- 4, 5.5 +/- 0.5, 4.1 +/- 0.4, 1.2 +/- .0.1, and 0.9 +/- 0.2 copies/ng RNA (means +/- SE), respectively, for the 10 subjects. Concentrations of mRNA for GLUT4, GLUT5, and GLUT12 were much higher than those for the remainder of the GLUTs and together accounted for 98% of the total GLUT isoform mRNA. Immunoblots of muscle homogenates verified that the respective proteins for GLUT4, GLUT5, and GLUT12 were present in normal human muscle. Immunofluorescent studies demonstrated that GLUT4 and GLUT12 were predominantly expressed in type I oxidative fibers; however, GLUT5 was expressed predominantly in type II (white) fibers.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/genética , Glucose/metabolismo , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Músculo Esquelético/fisiologia , Expressão Gênica , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 5/genética , Transportador de Glucose Tipo 5/metabolismo , Humanos , Imuno-Histoquímica , Músculo Esquelético/citologia , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...