Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(1)2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36611956

RESUMO

Green plant regeneration efficiency (GPRE) via in vitro anther culture results from biochemical pathways and cycle dysfunctions that may affect DNA and histone methylation, with gene expression influencing whole cell functioning. The reprogramming from gametophytic to sporophytic fate is part of the phenomenon. While DNA methylation and sequence changes related to the GPRE have been described, little attention was paid to the biochemical aspects of the phenomenon. Furthermore, only a few theoretical models that describe the complex relationships between biochemical aspects of GPRE and the role of Cu(II) ions in the induction medium and as cofactors of enzymatic reactions have been developed. Still, none of these models are devoted directly to the biochemical level. Fourier transform infrared (FTIR) spectroscopy was used in the current study to analyze triticale regenerants derived under various in vitro tissue culture conditions, including different Cu(II) and Ag(I) ion concentrations in the induction medium and anther culture times. The FTIR spectra of S-adenosyl-L-methionine (SAM), glutathione, and pectins in parallel with the Cu(II) ions, as well as the evaluated GPRE values, were put into the structural equation model (SEM). The data demonstrate the relationships between SAM, glutathione, pectins, and Cu(II) in the induction medium and how they affect GPRE. The SEM reflects the cell functioning under in vitro conditions and varying Cu(II) concentrations. In the presented model, the players are the Krebs and Yang cycles, the transsulfuration pathway controlled by Cu(II) ions acting as cofactors of enzymatic reactions, and the pectins of the primary cell wall.


Assuntos
Triticale , Triticale/genética , Metilação de DNA , Modelos Teóricos , Glutationa , Íons
2.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299165

RESUMO

In vitro tissue culture plant regeneration is a complicated process that requires stressful conditions affecting the cell functioning at multiple levels, including signaling pathways, transcriptome functioning, the interaction between cellular organelles (retro-, anterograde), compounds methylation, biochemical cycles, and DNA mutations. Unfortunately, the network linking all these aspects is not well understood, and the available knowledge is not systemized. Moreover, some aspects of the phenomenon are poorly studied. The present review attempts to present a broad range of aspects involved in the tissue culture-induced variation and hopefully would stimulate further investigations allowing a better understanding of the phenomenon and the cell functioning.


Assuntos
Regulação da Expressão Gênica de Plantas , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Técnicas de Cultura de Tecidos/métodos , Técnicas de Cultura de Tecidos/normas , Metilação de DNA , Epigênese Genética , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...