Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chaos ; 25(6): 064310, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26117121

RESUMO

A popular playground for studying chemo-hydrodynamic patterns and instabilities is chemical gardens, also known as silicate gardens. In these systems, complex structures spontaneously form, driven by buoyant forces and either osmotic or mechanical pumps. Here, we report on systems that differ somewhat from classical chemical gardens in that the membranes are much more deformable and soluble. These properties lead to structures that self-construct and evolve in new ways. For example, they exhibit the formation of chemical balloons, a new growth mechanism for tubes, and also the homologous shrinking of these tubes. The stretching mechanism for the membranes is probably different than for other systems by involving membrane "self-healing." Other unusual properties are osmosis that sometimes occurs out of the structure and also small plumes that flow away from the structure, sometimes upwards, and sometimes downwards. Mathematical models are given that explain some of the observed phenomena.


Assuntos
Hidróxido de Alumínio/química , Carbonatos/química , Membranas Artificiais , Modelos Químicos , Osmose , Elasticidade
2.
J Syst Chem ; 6(1): 3, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25834644

RESUMO

BACKGROUND: Biological structures grow spontaneously from a seed, using materials supplied by the environment. These structures are hierarchical, with the 'building blocks' on each level constructed from those on the lower level. To understand and model the processes that occur on many levels, and later construct them, is a difficult task. However interest in this subject is growing. It is now possible to study the spontaneous growth of hierarchical structures in simple, two component chemical systems. RESULTS: Aluminum-silicate systems have been observed to grow into structures that are approximately conical. These structures are composed of multiple smaller cones with several hierarchical levels of complexity. On the highest level the system resembles a metropolis, with a horizontal resource distribution network connecting vertical, conical structures. The cones are made from many smaller cones that are connected together forming a whole with unusual behavior. The growth is observed to switch periodically between the vertical and horizontal directions. CONCLUSION: A structure grown in a dish is observed to have many similarities to other hierarchical systems such as biological organisms or cities. This system may provide a simple model system to search for universal laws governing the growth of complex hierarchical structures. Graphical AbstractSide view of the chemical structure made from many vertical cones to form a chemical metropolis. The tallest structure is 17 cm high.

3.
Langmuir ; 30(20): 5726-31, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24805150

RESUMO

Chemical cells that spontaneously form in simple inorganic systems are presented. The cells are surrounded by semipermeable membranes that allow water and some ions to diffuse through. These cells exhibit dynamical behaviors that are typically associated with biological entities. These behaviors may be used to perform tasks such as rotation or linear translation in the vertical and horizontal directions. Yet another system builds "curtains". Behaviors are controlled by a complex network of physical and chemical processes that are organized in space and time. The type of dynamical behavior is determined by the chemical composition of the cell and the environment. By studying these systems we may learn general rules for the growth of living entities, or at least about the spontaneous growth of complex chemical structures. Understanding and mastering the synthesis of these systems may lead to new technologies where complex structures are grown rather than assembled.


Assuntos
Glicerídeos/química , Nanopartículas/química , Polietilenoglicóis/química , Água/química , Espalhamento a Baixo Ângulo , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...