Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38136307

RESUMO

Soft tissue sarcomas (STSs) are a rare heterogeneous group of malignant neoplasms characterized by their aggressive course and poor response to treatment. This determines the relevance of research aimed at studying the pathogenesis of STSs. By now, it is known that STSs is characterized by complex relationships between the tumor cells and immune cells of the microenvironment. Dynamic interactions between tumor cells and components of the microenvironment enhance adaptation to changing environmental conditions, which provides the high aggressive potential of STSs and resistance to antitumor therapy. Today, active research is being conducted to find effective antitumor drugs and to evaluate the possibility of using therapy with immune cells of STS. The difficulty in assessing the efficacy of new antitumor options is primarily due to the high heterogeneity of this group of malignant neoplasms. Studying the role of immune cells in the microenvironment in the progression STSs and resistance to antitumor therapies will provide the discovery of new biomarkers of the disease and the prediction of response to immunotherapy. In addition, it will help to initially divide patients into subgroups of good and poor response to immunotherapy, thus avoiding wasting precious time in selecting the appropriate antitumor agent.

2.
PeerJ ; 11: e16159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927787

RESUMO

Background: Colorectal cancer (CRC) is the third most common cancer. It is a heterogeneous disease, including both hereditary and sporadic types of tumors. CRC results from complex interactions between various genetic and environmental factors. Inflammatory bowel disease is an important risk factor for developing CRC. Despite growing understanding of the CRC biology, preclinical models are still needed to investigate the etiology and pathogenesis of the disease, as well as to find new methods of treatment and prevention. Objectives: The purpose of this review is to describe existing murine models of CRC with a focus on the models of colitis-associated CRC. This manuscript could be relevant for experimental biologists and oncologists. Methodology: We checked PubMed and Google from 01/2018 to 05/2023 for reviews of CRC models. In addition, we searched PubMed from 01/2022 to 01/2023 for articles using the azoxymethane (AOM)/dextran sulfate sodium (DSS) CRC model. Results: Existing murine models of CRC include spontaneous, genetically engineered, transplantation, and chemically induced models. For the study of colitis-associated cancer (CAC), the AOM/DSS model is predominantly used. This model is very similar in histological and molecular characteristics to the human CAC, and is highly reproducible, inexpensive, and easy to use. Despite its popularity, the AOM/DSS model is not standardized, which makes it difficult to analyze and compare data from different studies. Conclusions: Each model demonstrates particular advantages and disadvantages, and allows to reproduce different subtypes or aspects of the pathogenesis of CRC.


Assuntos
Neoplasias Associadas a Colite , Colite , Neoplasias Colorretais , Camundongos , Humanos , Animais , Azoximetano/toxicidade , Sulfato de Dextrana/toxicidade , Neoplasias Associadas a Colite/complicações , Colite/induzido quimicamente , Modelos Animais de Doenças , Neoplasias Colorretais/epidemiologia
3.
J Pers Med ; 13(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003931

RESUMO

Head and neck squamous cell cancer (HNSCC) is one of the ten most common malignant neoplasms, characterized by an aggressive course, high recurrence rate, poor response to treatment, and low survival rate. This creates the need for a deeper understanding of the mechanisms of the pathogenesis of this cancer. The tumor microenvironment (TME) of HNSCC consists of stromal and immune cells, blood and lymphatic vessels, and extracellular matrix. It is known that HNSCC is characterized by complex relationships between cancer cells and TME components. TME components and their dynamic interactions with cancer cells enhance tumor adaptation to the environment, which provides the highly aggressive potential of HNSCC and resistance to antitumor therapy. Basic research aimed at studying the role of TME components in HNSCC carcinogenesis may serve as a key to the discovery of both new biomarkers-predictors of prognosis and targets for new antitumor drugs. This review article focuses on the role and interaction with cancer of TME components such as newly formed vessels, cancer-associated fibroblasts, and extracellular matrix.

4.
PeerJ ; 11: e16052, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842051

RESUMO

Individual hypoxia tolerance is a major influence on the course and outcome of infectious and inflammatory diseases. Macrophages, which play central roles in systemic inflammatory response and other immunity reactions, are subject to functional activation orchestrated by several transcription factors including hypoxia inducible factors (HIFs). HIF-1 expression levels and the lipopolysaccharide (LPS)-induced systemic inflammatory response severity have been shown to correlate with hypoxia tolerance. Molecular and functional features of macrophages, depending on the organisms resistance to hypoxia, can determine the severity of the course of infectious and inflammatory diseases, including the systemic inflammatory response. The purpose is the comparative molecular and functional characterization of non-activated and LPS-activated bone marrow-derived macrophages under normoxia in rats with different tolerance to oxygen deprivation. Hypoxia resistance was assessed by gasping time measurement in an 11,500 m altitude-equivalent hypobaric decompression chamber. Based on the outcome, the animals were assigned to three groups termed 'tolerant to hypoxia' (n = 12), 'normal', and 'susceptible to hypoxia' (n = 13). The 'normal' group was excluded from subsequent experiments. One month after hypoxia resistance test, the blood was collected from the tail vein to isolate monocytes. Non-activated and LPS-activated macrophage cultures were investigated by PCR, flow cytometry and Western blot methods. Gene expression patterns of non-activated cultured macrophages from tolerant and susceptible to hypoxia animals differed. We observed higher expression of VEGF and CD11b and lower expression of Tnfa, Il1b and Epas1 in non-activated cultures obtained from tolerant to hypoxia animals, whereas HIF-1α mRNA and protein expression levels were similar. LPS-activated macrophage cultures derived from susceptible to hypoxia animals expressed higher levels of Hif1a and CCR7 than the tolerant group; in addition, the activation was associated with increased content of HIF-1α in cell culture medium. The observed differences indicate a specific propensity toward pro-inflammatory macrophage polarization in susceptible to hypoxia rats.


Assuntos
Lipopolissacarídeos , Macrófagos , Ratos , Animais , Lipopolissacarídeos/farmacologia , Hipóxia/genética , Monócitos , Suscetibilidade a Doenças/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/metabolismo
5.
Toxics ; 11(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37755741

RESUMO

Microplastic pollution poses a threat to human health. It is possible that the increase in the incidence of inflammatory bowel disease is associated with exposure to microplastics. We investigated the effect of the consumption of polystyrene microparticles with a diameter of 5 µm at a dose of 2.3 mg/kg/day for 6 weeks on morphological changes in the colons of healthy male C57BL/6 mice and of mice with acute colitis induced by a 1% dextran sulfate sodium solution (DSS). In healthy mice, microplastics caused an increase in the number of endocrine cells, an increase in the content of highly sulfated mucins in goblet cells, an increase in the number of cells in the lamina propria, and a decrease in the volume fraction of macrophages. Microplastic consumption caused more severe acute colitis, which is characterized by a greater prevalence of ulcers and inflammation and a decrease in the content of neutral mucins in goblet cells.

6.
Biochemistry (Mosc) ; 88(6): 741-757, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37748871

RESUMO

Hypoxia causes changes in transcription of the genes that contribute to adaptation of the cells to low levels of oxygen. The main mechanism regulating cellular response to hypoxia is activation of hypoxia-inducible transcription factors (HIF), which include several isoforms and control expression of more than a thousand genes. HIF activity is regulated at various levels, including by small non-coding RNA molecules called microRNAs (miRNAs). miRNAs regulate cellular response to hypoxia by influencing activation of HIF, its degradation, and translation of HIF-dependent proteins. At the same time, HIFs also affect miRNAs biogenesis. Data on the relationship of a particular HIF isoform with miRNAs are contradictory, since studies have been performed using different cell lines, various types of experimental animals and clinical material, as well as at different oxygen concentrations and durations of hypoxic exposure. In addition, HIF expression may be affected by the initial resistance of organisms to lack of oxygen, which has not been taken into account in the studies. This review analyzes the data on the effect of hypoxia on biogenesis and functioning of miRNAs, as well as on the effect of miRNAs on mRNAs of the genes involved in adaptation to oxygen deficiency. Understanding the mechanisms of relationship between HIF, hypoxia, and miRNA is necessary to develop new approaches to personalized therapy for diseases accompanied by oxygen deficiency.


Assuntos
MicroRNAs , Animais , MicroRNAs/genética , Hipóxia/genética , Oxigênio , Linhagem Celular , RNA Mensageiro
7.
J Nanobiotechnology ; 20(1): 535, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528614

RESUMO

Magnetic nanoparticles are widely used in biomedicine for MRI imaging and anemia treatment. The aging of these nanomaterials in vivo may lead to gradual diminishing of their contrast properties and inducing toxicity. Here, we describe observation of the full lifecycle of 40-nm magnetic particles from their injection to the complete degradation in vivo and associated impact on the organism. We found that in 2 h the nanoparticles were eliminated from the bloodstream, but their initial biodistribution changed over time. In 1 week, a major part of the nanoparticles was transferred to the liver and spleen, where they degraded with a half-life of 21 days. MRI and a magnetic spectral approach revealed preservation of contrast in these organs for more than 1 month. The particle degradation led to the increased number of red blood cells and blood hemoglobin level due to released iron without causing any toxicity in tissues. We also observed an increase in gene expression level of Fe-associated proteins such as transferrin, DMT1, and ferroportin in the liver in response to the iron particle degradation. A deeper understanding of the organism response to the particle degradation can bring new directions to the field of MRI contrast agent design.


Assuntos
Nanopartículas de Magnetita , Nanopartículas de Magnetita/toxicidade , Distribuição Tecidual , Magnetismo , Ferro , Imageamento por Ressonância Magnética/métodos , Biotransformação , Meios de Contraste
8.
Biochemistry (Mosc) ; 87(9): 995-1014, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36180993

RESUMO

Aging is accompanied by a reduction in the oxygen delivery to all organs and tissues and decrease in the oxygen partial pressure in them, resulting in the development of hypoxia. The lack of oxygen activates cell signaling pathway mediated by the hypoxia-inducible transcription factor (HIF), which exists in three isoforms - HIF-1, HIF-2, and HIF-3. HIF regulates expression of several thousand genes and is a potential target for the development of new drugs for the treatment of many diseases, including those associated with age. Human organism and organisms of laboratory animals differ in their tolerance to hypoxia and expression of HIF and HIF-dependent genes, which may contribute to the development of inflammatory, tumor, and cardiovascular diseases. Currently, the data on changes in the HIF expression with age are contradictory, which is mostly due to the fact that such studies are conducted in different age groups, cell types, and model organisms, as well as under different hypoxic conditions and mainly in vitro. Furthermore, the observed discrepancies can be due to the individual tolerance of the studied organisms to hypoxia, which is typically not taken into account. Therefore, the purpose of this review was to analyze the published data on the connection between the mechanisms of aging, basal tolerance to hypoxia, and changes in the level of HIF expression with age. Here, we summarized the data on the age-related changes in the hypoxia tolerance, HIF expression and the role of HIF in aging, which is associated with its involvement in the molecular pathways mediated by insulin and IGF-1 (IIS), sirtuins (SIRTs), and mTOR. HIF-1 interacts with many components of the IIS pathway, in particular with FOXO, the activation of which reduces production of reactive oxygen species (ROS) and increases hypoxia tolerance. Under hypoxic conditions, FOXO is activated via both HIF-dependent and HIF-independent pathways, which contributes to a decrease in the ROS levels. The activity of HIF-1 is regulated by all members of the sirtuin family, except SIRT5, while the mechanisms of SIRT interaction with HIF-2 and HIF-3 are poorly understood. The connection between HIF and mTOR and its inhibitor, AMPK, has been identified, but its exact mechanism has yet to be studied. Understanding the role of HIF and hypoxia in aging and pathogenesis of age-associated diseases is essential for the development of new approaches to the personalized therapy of these diseases, and requires further research.


Assuntos
Insulinas , Sirtuínas , Proteínas Quinases Ativadas por AMP/metabolismo , Envelhecimento , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular , Humanos , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Insulinas/metabolismo , Oxigênio/metabolismo , Isoformas de Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirtuínas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo
9.
J Pers Med ; 12(9)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36143308

RESUMO

Head-and-neck cancers constitute a heterogeneous group of aggressive tumors with high incidence and low survival rates, collectively being the sixth most prevalent cancer type globally. About 90% of head-and-neck cancers are classified as squamous cell carcinomas (HNSCC). The innate and adaptive immune systems, indispensable for anti-cancer immune surveillance, largely define the rates of HNSCC emergence and progression. HNSCC microenvironments harbor multiple cell types that infiltrate the tumors and interact both with tumor cells and among themselves. Gradually, tumor cells learn to manipulate the immune system, either by adapting their own immunogenicity or through the release of immunosuppressive molecules. These interactions continuously evolve and shape the tumor microenvironment, both structurally and functionally, facilitating angiogenesis, proliferation and metastasis. Our understanding of this evolution is directly related to success in the development of advanced therapies. This review focuses on the key mechanisms that rule HNSCC infiltration, featuring particular immune cell types and their roles in the pathogenesis. A close focus on the tumor-immunity interactions will help identify new immunotherapeutic targets in patients with HNSCC.

10.
PeerJ ; 10: e13503, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722253

RESUMO

Background: The environmental pollution by microplastics is a global problem arising from the extensive production and use of plastics. Small particles of different plastics, measured less than 5 mm in diameter, are found in water, air, soil, and various living organisms around the globe. Humans constantly inhale and ingest these particles. The associated health risks raise major concerns and require dedicated evaluation. Objectives: In this review we systematize and summarize the effects of microplastics on the health of different animals. The article would be of interest to ecologists, experimental biologists, environmental physicians, and all those concerned with anthropogenic environmental changes. Methodology: We searched PubMed and Scopus from the period of 01/2010 to 09/2021 for peer-reviewed scientific publications focused on (1) environmental pollution with microplastics; (2) uptake of microplastics by humans; and (3) the impact of microplastics on animal health. Results: The number of published studies considering the effects of microplastic particles on aquatic organisms is considerable. In aquatic invertebrates, microplastics cause a decline in feeding behavior and fertility, slow down larval growth and development, increase oxygen consumption, and stimulate the production of reactive oxygen species. In fish, the microplastics may cause structural damage to the intestine, liver, gills, and brain, while affecting metabolic balance, behavior, and fertility; the degree of these harmful effects depends on the particle sizes and doses, as well as the exposure parameters. The corresponding data for terrestrial mammals are less abundant: only 30 papers found in PubMed and Scopus deal with the effects of microplastics in laboratory mice and rats; remarkably, about half of these papers were published in 2021, indicating the growing interest of the scientific community in this issue. The studies demonstrate that in mice and rats microplastics may also cause biochemical and structural damage with noticeable dysfunctions of the intestine, liver, and excretory and reproductive systems. Conclusions: Microplastics pollute the seas and negatively affect the health of aquatic organisms. The data obtained in laboratory mice and rats suggest a profound negative influence of microplastics on human health. However, given significant variation in plastic types, particle sizes, doses, models, and modes of administration, the available experimental data are still fragmentary and controversial.


Assuntos
Microplásticos , Plásticos , Humanos , Animais , Camundongos , Ratos , Microplásticos/efeitos adversos , Plásticos/efeitos adversos , Poluição Ambiental/efeitos adversos , Invertebrados , Organismos Aquáticos , Mamíferos
11.
Int J Pharm ; 621: 121795, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35526695

RESUMO

The rapid elimination of systemically administered drug nanocarriers by the mononuclear phagocyte system (MPS) compromises nanomedicine delivery efficacy. To mitigate this problem, an approach to block the MPS has been introduced and implemented by intravenous pre-administering blocker nanoparticles. The required large doses of blocker nanoparticles appeared to burden the MPS, raising toxicity concerns. To alleviate the toxicity issues in MPS blockade, we propose an intrinsically biocompatible blocker, ferrihydrite - a metabolite ubiquitous in a biological organism. Ferrihydrite particles were synthesized to mimic endogenous ferritin-bound iron. Ferrihydrite surface coating with carboxymethyl-dextran was found to improve MPS blockade dramatically with a 9-fold prolongation of magnetic nanoparticle circulation in the bloodstream and a 24-fold increase in the tumor targeted delivery. The administration of high doses of ferrihydrite caused low toxicity with a rapid recovery of toxicological parameters after 3 days. We believe that ferrihydrite particles coated with carboxymethyl-dextran represent superior blocking biomaterial with enviable biocompatibility.


Assuntos
Nanopartículas , Neoplasias , Dextranos , Compostos Férricos , Humanos , Macrófagos , Neoplasias/tratamento farmacológico
12.
Biochemistry (Mosc) ; 86(10): 1163-1180, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34903150

RESUMO

Oxygen deficiency is one of the key pathogenetic factors determining development and severity of many diseases, including inflammatory, infectious diseases, and cancer. Lack of oxygen activates the signaling pathway of the hypoxia-inducible transcription factor HIF in cells that has three isoforms, HIF-1, HIF-2, HIF-3, regulating expression of several thousand genes. Throughout tumor progression, HIF activation stimulates angiogenesis, promotes changes in cell metabolism, adhesion, invasiveness, and ability to metastasize. HIF isoforms can play opposite roles in the development of inflammatory and neoplastic processes. Humans and laboratory animals differ both in tolerance to hypoxia and in the levels of expression of HIF and HIF-dependent genes, which may lead to predisposition to the development of certain oncological disorders. In particular, the ratio of different histogenetic types of tumors may vary among people living in the mountains and at the sea level. However, despite the key role of hypoxia at almost all stages of tumor development, basal tolerance to oxygen deficiency is not considered as a factor of predisposition to the tumor growth initiation. In literature, there are many works characterizing the level of local hypoxia in various tumors, and suggesting fundamental approaches to its mitigation by HIF inhibition. HIF inhibitors, as a rule, have a systemic effect on the organism, however, basal tolerance of an organism to hypoxia as well as the level of HIF expression are not taken into account in the process of their use. The review summarizes the literature data on different HIF isoforms and their role in tumor progression, with extrapolation to organisms with high and low tolerance to hypoxia, as well as on the prevalence of various types of tumors in the populations living at high altitudes.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Hipóxia Celular/fisiologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética
13.
Heliyon ; 7(9): e08085, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34632150

RESUMO

Hypoxia tolerance of the organism depends on many factors, including age. High newborn organisms tolerance and high level of oxidative stress throughout aging were demonstrated by many studies. However, there is lack of investigations reflecting the expression of key hypoxia-inducible factor HIF in different age organisms in correlation to levels of pro-inflammatory and anti-inflammatory cytokines. Liver is a sensitive to hypoxia organ, and is an important organ in providing an acute reaction to infections - it synthesizes acute inflammation phase proteins, in particular, C-reactive protein. The aim of study was to determine relationship between age-related tolerance to hypoxia and HIF-1 and PHD2 (prolyl hydroxylase domain protein) expression levels in the liver and the production of cytokines in the spleen in newborn, prepubertal and adult Wistar rats. Newborn rats are characterized by high mRNA Hif-1α expression level in the liver, accompanied by a low content of HIF-1 protein and high level of PHD2. The growth in HIF-1α protein level throughout age is accompanied by the growth of pro-inflammatory cytokines level. Prepubertal animals are the least hypoxia resistant and their HIF-1α mRNA expression level was higher than in adult animals. The PHD2 activity in prepubertal animals was significantly reduced in comparison to newborn rats, and the HIF-1α protein level did not change. Further studies require the identification of additional mechanisms, determining the regulation of the HIF-1α level in prepubertal animals.

14.
Front Immunol ; 12: 682871, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040616

RESUMO

Macrophages are cells that mediate both innate and adaptive immunity reactions, playing a major role in both physiological and pathological processes. Systemic SARS-CoV-2-associated complications include acute respiratory distress syndrome (ARDS), disseminated intravascular coagulation syndrome, edema, and pneumonia. These are predominantly effects of massive macrophage activation that collectively can be defined as macrophage activation syndrome. In this review we focus on the role of macrophages in COVID-19, as pathogenesis of the new coronavirus infection, especially in cases complicated by ARDS, largely depends on macrophage phenotypes and functionalities. We describe participation of monocytes, monocyte-derived and resident lung macrophages in SARS-CoV-2-associated ARDS and discuss possible utility of cell therapies for its treatment, notably the use of reprogrammed macrophages with stable pro- or anti-inflammatory phenotypes.


Assuntos
COVID-19/patologia , Macrófagos/imunologia , Síndrome do Desconforto Respiratório/patologia , COVID-19/complicações , COVID-19/imunologia , COVID-19/terapia , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Inflamação , Pulmão/imunologia , Pulmão/patologia , Ativação de Macrófagos , Macrófagos/transplante , Macrófagos Alveolares/imunologia , Monócitos/imunologia , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/terapia , SARS-CoV-2
15.
Biomedicines ; 8(10)2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33080959

RESUMO

Hypoxia plays an important role in the development of many infectious, inflammatory, and tumor diseases. The predisposition to such disorders is mostly provided by differences in basic tolerance to oxygen deficiency, which we discuss in this review. Except the direct exposure of different-severity hypoxia in decompression chambers or in highland conditions, there are no alternative methods for determining organism tolerance. Due to the variability of the detection methods, differences in many parameters between tolerant and susceptible organisms are still not well-characterized, but some of them can serve as biomarkers of susceptibility to hypoxia. At the moment, several potential biomarkers in conditions after hypoxic exposure have been identified both in experimental animals and humans. The main potential biomarkers are Hypoxia-Inducible Factor (HIF)-1, Heat-Shock Protein 70 (HSP70), and NO. Due to the different mechanisms of various high-altitude diseases, biomarkers may not be highly specific and universal. Therefore, it is extremely important to conduct research on hypoxia susceptibility biomarkers. Moreover, it is important to develop a method for the evaluation of organisms' basic hypoxia tolerance without the necessity of any oxygen deficiency exposure. This can contribute to new personalized medicine approaches' development for diagnostics and the treatment of inflammatory and tumor diseases, taking into account hypoxia tolerance differences.

16.
Sci Rep ; 10(1): 15884, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985516

RESUMO

It is a common fact, that the content of sex hormones in humans and animals varies in different age periods. The functional state of the immune system also changes with age. However, sex differences studies of inflammatory and immune responses during puberty prevail in literature. Investigation of immune responses to LPS peculiarities in prepubertal females and males may contribute to the development of more effective immunotherapy and minimize side effects of children vaccination. Therefore, the aim of this work was to investigate the LPS-induced SIRS sex differences in prepubertal Wistar rats. Despite the absence of sex differences in estradiol and testosterone levels, LPS-induced inflammatory changes in liver and lungs are more pronounced among males. Males demonstrate the increasing neopterin, corticosterone levels and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity. Not less important is that in females, demonstrating less morphological changes in liver and lungs, endotoxin level is tenfold higher, and corticosterone level decreases. Thus, endotoxin cannot be used as a marker of the severity of multiple organ failure in prepubertal period. The LPS-induced immune reactions in females and males are similar and are characterized by immunosuppression. Both females and males have decreased production of cytokines (IL-2, IL-4, TNF-α, TGF-ß) and the absolute number of CD3 + and CD3 + CD8 + lymphocytes in blood. The acute atrophy of thymus and apoptosis of thymic cells are revealed in animals of both sexes. However, the number of CD3 + CD4 + T-helpers and CD4 + CD25 + Foxp3 + T-cells decreases only in females with SIRS, and in males there was a decrease of CD45R + B-cells. The least expressed sex differences in immune responses in the prepubertal period can be determined by the low levels of sex steroids and the absence of their immunomodulatory effect. Further studies require the identification of mechanisms, determining the sex differences in the inflammatory and immune responses in prepubertal animals.


Assuntos
Imunidade/fisiologia , Fígado/imunologia , Pulmão/imunologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Animais , Corticosterona/sangue , Endotoxinas/sangue , Estradiol/sangue , Feminino , Fígado/patologia , Pulmão/patologia , Masculino , Ratos , Ratos Wistar , Fatores Sexuais , Síndrome de Resposta Inflamatória Sistêmica/sangue , Síndrome de Resposta Inflamatória Sistêmica/patologia , Testosterona/sangue
17.
Int J Inflam ; 2019: 7584685, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057785

RESUMO

On the model of the systemic inflammatory response (SIRS), induced by lipopolysaccharide (LPS), the morphological and functional changes in the thymus and spleen and the subpopulation composition of peripheral blood lymphocytes of rats differing in resistance to hypoxia were studied. It was demonstrated that the level of endotoxin in blood serum after 3 hours of LPS administration in susceptible-to-hypoxia rats was 64 times higher than in the control group, while in tolerant-to-hypoxia animals it was only 8 times higher in 6 hours. After 24 hours of LPS injection, only in susceptible-to-hypoxia rats did the level of C-reactive protein in blood serum increase. There is a difference in the dynamics of morphological changes of lymphoid organs after LPS injection in tolerant- and susceptible-to-hypoxia animals. After 3 hours of LPS administration, the tolerant-to-hypoxia rats showed no changes in the thymus, spleen, and subpopulation composition of lymphocytes in peripheral blood. After 6 hours there was only a decrease in B-lymphocytes and increase in cytotoxic T-lymphocytes and NK cells. After 1 day of LPS injection, the tolerant-to-hypoxia rats had devastation in PALS of the spleen. After 3 hours of LPS injection the susceptible-to-hypoxia animals had reactive changes in the lymphoid organs: decrease of the thymus cortex, narrowing of the marginal zones of spleen lymphoid follicles, widening of their germinal centers, and a decrease in the absolute number of cytotoxic T-lymphocytes, NK cells, and B-lymphocytes. After 24 hours of LPS injection the tolerant-to-hypoxia animals had a greater absolute number of T-lymphocytes and NK cells in comparison with the susceptible rats. Thus, in animals with different resistance to hypoxia the LPS-induced SIRS is characterized by different dynamics of morphological and functional changes of the thymus and spleen. The obtained data will serve as a basis for the development of new individual approaches to the prevention and treatment of infectious and inflammatory diseases.

18.
J Inflamm Res ; 12: 73-86, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30881082

RESUMO

PURPOSE: The aim of the study was to characterize the severity of the systemic inflammatory response induced by lipopolysaccharide (LPS) in animals with different resistance levels to hypoxia. MATERIALS AND METHODS: Two to three months old male Wistar rats (220-240 g) were divided according to hypoxia tolerance in a hypobaric chamber. After a month, they were injected intraperitoneally with Escherichia coli LPS at a dose of 1.5 mg/kg. After 3, 6 and 24 hours of LPS injection, we studied the levels of IL-1ß, C-reactive protein (CRP) and TGF-ß in the serum, the expression of Hif-1α and Nf-kb in the liver, morphological disorders in the lung and ex vivo production of IL-10 by splenic cells activated by ConA. RESULTS: In the early periods after the injection of LPS, increase in Nf-kb expression in the liver was observed only in the rats susceptible to hypoxia. After 6 hours of LPS injection, the number of neutrophils in the interalveolar septa of the lungs of rats susceptible to hypoxia was higher than in tolerant rats. This points to the development of more pronounced LPS-induced inflammation in the rats susceptible to hypoxia and is accompanied by increased expression of Hif-1α in the liver after 6 hours of LPS administration, serum IL-1ß level after 3 hours and CRP level after 24 hours. The production of the anti-inflammatory cytokine IL-10 by the spleen was significantly decreased after 6 hours of LPS injection only in the animals tolerant to hypoxia. After 24 hours of LPS injection, a significant decrease in serum TGF-ß level occurred in the rats tolerant to hypoxia in comparison with the control group, which improved the survival rates of the animals. CONCLUSION: We have demonstrated the differences in the severity of the LPS-induced inflammatory response in male Wistar rats with different resistance levels to hypoxia. Rats susceptible to hypoxia are characterized by a more pronounced inflammatory response induced by LPS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...