Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(37): eabl6850, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36112684

RESUMO

The quantum Kibble-Zurek mechanism (QKZM) predicts universal dynamical behavior near the quantum phase transitions (QPTs). It is now well understood for the one-dimensional quantum matter. Higher-dimensional systems, however, remain a challenge, complicated by the fundamentally different character of the associated QPTs and their underlying conformal field theories. In this work, we take the first steps toward theoretical exploration of the QKZM in two dimensions for interacting quantum matter. We study the dynamical crossing of the QPT in the paradigmatic Ising model by a joint effort of modern state-of-the-art numerical methods, including artificial neural networks and tensor networks. As a central result, we quantify universal QKZM behavior close to the QPT. We also note that, upon traversing further into the ferromagnetic regime, deviations from the QKZM prediction appear. We explain the observed behavior by proposing an extended QKZM taking into account spectral information as well as phase ordering. Our work provides a testing platform for higher-dimensional quantum simulators.

2.
Phys Rev Lett ; 129(26): 260407, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36608203

RESUMO

It is now widely accepted that quenches through the critical region of quantum phase transitions result in post-transition states populated with topological defects-analogs of the classical topological defects. However, consequences of the very nonclassical fact that the state after a quench is a superposition of distinct, broken-symmetry vacua with different numbers and locations of defects have remained largely unexplored. We identify coherent quantum oscillations induced by such superpositions in observables complementary to the one involved in symmetry breaking. These oscillations satisfy Kibble-Zurek dynamical scaling laws with the quench rate, with an instantaneous oscillation frequency set primarily by the gap of the system. In addition to the obvious fundamental significance of a superposition of different broken symmetry states, quantum coherent oscillations can be used to verify unitarity and test for imperfections of the experimental implementations of quantum simulators.

3.
Nat Commun ; 11(1): 250, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937760

RESUMO

Identification of the optimal quantum metrological protocols in realistic many particle quantum models is in general a challenge that cannot be efficiently addressed by the state-of-the-art numerical and analytical methods. Here we provide a comprehensive framework exploiting matrix product operators (MPO) type tensor networks for quantum metrological problems. The maximal achievable estimation precision as well as the optimal probe states in previously inaccessible regimes can be identified including models with short-range noise correlations. Moreover, the application of infinite MPO (iMPO) techniques allows for a direct and efficient determination of the asymptotic precision in the limit of infinite particle numbers. We illustrate the potential of our framework in terms of an atomic clock stabilization (temporal noise correlation) example as well as magnetic field sensing (spatial noise correlations). As a byproduct, the developed methods may be used to calculate the fidelity susceptibility-a parameter widely used to study phase transitions.

4.
Phys Rev Lett ; 123(13): 130603, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31697549

RESUMO

The Kibble-Zurek mechanism predicts the formation of topological defects and other excitations that quantify how much a quantum system driven across a quantum critical point fails to be adiabatic. We point out that, thanks to the divergent linear susceptibility at the critical point, even a tiny symmetry breaking bias can restore the adiabaticity. The minimal required bias scales like τ_{Q}^{-ßδ/(1+zν)}, where ß, δ, z, ν are the critical exponents and τ_{Q} is a quench time. We test this prediction by DMRG simulations of the quantum Ising chain. It is directly applicable to the recent emulation of quantum phase transition dynamics in the Ising chain with ultracold Rydberg atoms.

5.
Sci Rep ; 8(1): 4539, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540761

RESUMO

The shift of interest from general purpose quantum computers to adiabatic quantum computing or quantum annealing calls for a broadly applicable and easy to implement test to assess how quantum or adiabatic is a specific hardware. Here we propose such a test based on an exactly solvable many body system-the quantum Ising chain in transverse field-and implement it on the D-Wave machine. An ideal adiabatic quench of the quantum Ising chain should lead to an ordered broken symmetry ground state with all spins aligned in the same direction. An actual quench can be imperfect due to decoherence, noise, flaws in the implemented Hamiltonian, or simply too fast to be adiabatic. Imperfections result in topological defects: Spins change orientation, kinks punctuating ordered sections of the chain. The number of such defects quantifies the extent by which the quantum computer misses the ground state, and is, therefore, imperfect.

6.
Sci Rep ; 4: 5950, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25091996

RESUMO

Kibble-Zurek mechanism (KZM) uses critical scaling to predict density of topological defects and other excitations created in second order phase transitions. We point out that simply inserting asymptotic critical exponents deduced from the immediate vicinity of the critical point to obtain predictions can lead to results that are inconsistent with a more careful KZM analysis based on causality - on the comparison of the relaxation time of the order parameter with the "time distance" from the critical point. As a result, scaling of quench-generated excitations with quench rates can exhibit behavior that is locally (i.e., in the neighborhood of any given quench rate) well approximated by the power law, but with exponents that depend on that rate, and that are quite different from the naive prediction based on the critical exponents relevant for asymptotically long quench times. Kosterlitz-Thouless scaling (that governs e.g. Mott insulator to superfluid transition in the Bose-Hubbard model in one dimension) is investigated as an example of this phenomenon.

7.
Phys Rev Lett ; 112(11): 117204, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24702410

RESUMO

We present rigorous topological order which emerges in a one-dimensional spin-orbital model due to the ring topology. Although this model with SU(2) spin and XY orbital interactions is known to exactly separate spins from orbitals by means of a unitary transformation on the open chain, we find that they are not quite independent when the chain is closed, and the spins form two half-rings carrying opposite quasimomenta. We show that on changing the topology from an open to a periodic chain, the degeneracy of the ground state is partially lifted while the low-energy excitations have a quadratic dispersion as a function of the total quasimomentum. This novel type of topological order which emerges from changing the topology from an open to a periodic chain is reminiscent of the infinite-U Hubbard chain.

8.
Phys Rev Lett ; 110(4): 045303, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25166176

RESUMO

We consider a phase transition from an antiferromagnetic to a phase separated ground state in a spin-1 Bose-Einstein condensate of ultracold atoms. We demonstrate the occurrence of two scaling laws, for the number of spin domain seeds just after the phase transition, and for the number of spin domains in the final, stable configuration. Only the first scaling can be explained by the standard Kibble-Zurek mechanism. We explain the occurrence of two scaling laws by a model including postselection of spin domains due to the conservation of condensate magnetization.

9.
Phys Rev Lett ; 109(23): 237201, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23368254

RESUMO

Quantum phase transitions in the two-dimensional Kugel-Khomskii model on a square lattice are studied using the plaquette mean field theory and the entanglement renormalization Ansatz. When 3z(2)-r(2) orbitals are favored by the crystal field and Hund's exchange is finite, both methods give a noncollinear exotic magnetic order that consists of four sublattices with mutually orthogonal nearest-neighbor and antiferromagnetic second-neighbor spins. We derive an effective frustrated spin model with second- and third-neighbor spin interactions which stabilize this phase and follow from spin-orbital quantum fluctuations involving spin singlets entangled with orbital excitations.

10.
Phys Rev Lett ; 105(1): 018903; author reply 018904, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20867488
11.
Phys Rev Lett ; 101(18): 187202, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18999858

RESUMO

We study frustrated quantum systems from a quantum information perspective. Within this approach, we find that highly frustrated systems do not follow any general "area law" of block entanglement, while weakly frustrated ones have area laws similar to those of nonfrustrated systems away from criticality. To calculate the block entanglement in systems with degenerate ground states, typical in frustrated systems, we define a "cooling" procedure of the ground state manifold and propose a frustration degree and a method to quantify constructive and destructive interference effects of entanglement.

12.
Phys Rev Lett ; 101(11): 115701, 2008 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-18851300

RESUMO

We study phase transition from the Mott insulator to superfluid in a periodic optical lattice. Kibble-Zurek mechanism predicts buildup of winding number through random walk of BEC phases, with the step size scaling as a third root of transition rate. We confirm this and demonstrate that this scaling accounts for the net winding number after the transition.

13.
Phys Rev Lett ; 100(24): 240603, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18643564

RESUMO

We propose a symmetric version of the multiscale entanglement renormalization ansatz in two spatial dimensions (2D) and use this ansatz to find an unknown ground state of a 2D quantum system. Results in the simple 2D quantum Ising model on the 8x8 square lattice are found to be very accurate even with the smallest nontrivial truncation parameter.

14.
Phys Rev Lett ; 95(24): 245701, 2005 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-16384394

RESUMO

The Quantum Ising model is an exactly solvable model of quantum phase transition. This Letter gives an exact solution when the system is driven through the critical point at a finite rate. The evolution goes through a series of Landau-Zener level anticrossings when pairs of quasiparticles with opposite pseudomomenta get excited with a probability depending on the transition rate. The average density of defects excited in this way scales like a square root of the transition rate. This scaling is the same as the scaling obtained when the standard Kibble-Zurek mechanism of thermodynamic second order phase transitions is applied to the quantum phase transition in the Ising model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...