Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 12(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37959377

RESUMO

The aim of the study was to develop a computerized method for distinguishing COVID-19-affected cases from cases of pneumonia. This task continues to be a real challenge in the practice of diagnosing COVID-19 disease. In the study, a new approach was proposed, using a comprehensive set of diagnostic information (CSDI) including, among other things, medical history, demographic data, signs and symptoms of the disease, and laboratory results. These data have the advantage of being much more reliable compared with data based on a single source of information, such as radiological imaging. On this basis, a comprehensive process of building predictive models was carried out, including such steps as data preprocessing, feature selection, training, and evaluation of classification models. During the study, 9 different methods for feature selection were used, while the grid search method and 12 popular classification algorithms were employed to build classification models. The most effective model achieved a classification accuracy (ACC) of 85%, a sensitivity (TPR) equal to 83%, and a specificity (TNR) of 88%. The model was built using the random forest method with 15 features selected using the recursive feature elimination selection method. The results provide an opportunity to build a computer system to assist the physician in the diagnosis of the COVID-19 disease.

2.
Sensors (Basel) ; 22(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36365886

RESUMO

The aim of this study was to assess the possibility of using deep convolutional neural networks (DCNNs) to develop an effective method for diagnosing osteoporosis based on CT images of the spine. The research material included the CT images of L1 spongy tissue belonging to 100 patients (50 healthy and 50 diagnosed with osteoporosis). Six pre-trained DCNN architectures with different topological depths (VGG16, VGG19, MobileNetV2, Xception, ResNet50, and InceptionResNetV2) were used in the study. The best results were obtained for the VGG16 model characterised by the lowest topological depth (ACC = 95%, TPR = 96%, and TNR = 94%). A specific challenge during the study was the relatively small (for deep learning) number of observations (400 images). This problem was solved using DCNN models pre-trained on a large dataset and a data augmentation technique. The obtained results allow us to conclude that the transfer learning technique yields satisfactory results during the construction of deep models for the diagnosis of osteoporosis based on small datasets of CT images of the spine.


Assuntos
Redes Neurais de Computação , Osteoporose , Humanos , Osteoporose/diagnóstico por imagem
3.
J Clin Med ; 11(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35956142

RESUMO

The aim of the study was to compare the accuracy of the classification pertaining to the results of two types of soft tissue and bone reconstructions of the spinal CT in detecting the porosity of L1 vertebral body spongy tissue. The dataset for each type of reconstruction (high-resolution bone reconstruction and soft tissue reconstruction) included 400 sponge tissue images from 50 healthy patients and 50 patients with osteoporosis. Texture feature descriptors were calculated based on the statistical analysis of the grey image histogram, autoregression model, and wavelet transform. The data dimensional reduction was applied by feature selection using nine methods representing various approaches (filter, wrapper, and embedded methods). Eleven methods were used to build the classifier models. In the learning process, hyperparametric optimization based on the grid search method was applied. On this basis, the most effective model and the optimal subset of features for each selection method used were determined. In the case of bone reconstruction images, four models achieved a maximum accuracy of 92%, one of which had the highest sensitivity of 95%, with a specificity of 89%. For soft tissue reconstruction images, five models achieved the highest testing accuracy of 95%, whereas the other quality indices (TPR and TNR) were also equal to 95%. The research showed that the images derived from soft tissue reconstruction allow for obtaining more accurate values of texture parameters, which increases the accuracy of the classification and offers better possibilities for diagnosing osteoporosis.

4.
Proc Inst Mech Eng H ; 233(12): 1269-1281, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31581886

RESUMO

Fractal analysis was used in the study to determine a set of feature descriptors which could be applied in the process of diagnosing bone damage caused by osteoporosis. The subject of the research involved the computed tomography images of vertebrae on the thoraco-lumbar region. The data set contained the images of healthy patients and patients diagnosed with osteoporosis. On the basis of fractal analysis and feature selection by linear stepwise regression, three descriptors were obtained. They were two fractal dimensions calculated with the variation method (transect - first differences and filter 1 estimators) and one fractal lacunarity calculated by means of the box counting method. The first two descriptors were obtained as a result of the analysis of grey images, and the third was the result of analysis of binary images. The effectiveness of the descriptors was verified using six popular supervised classification methods: linear and quadratic discriminant analysis, naive Bayes classifier, decision tree, K-nearest neighbours and random forests. The best results were obtained using the K-nearest neighbours classifier; they were as follows: overall classification accuracy - 81%, classification sensitivity - 78%, classification specificity - 90%, positive predictive value - 90%, and negative predictive value - 77%. The results of the research showed that fractal analysis can be a useful tool to extract feature vector of spinal computed tomography images in the diagnosis of osteoporotic bone defects.


Assuntos
Fractais , Processamento de Imagem Assistida por Computador/métodos , Vértebras Lombares/diagnóstico por imagem , Osteoporose/diagnóstico por imagem , Vértebras Torácicas/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Humanos , Vértebras Lombares/patologia , Osteoporose/patologia , Vértebras Torácicas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...