Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; 17(1): e20423, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38123363

RESUMO

Optimizing leaf angle and other canopy architecture traits has helped modern maize (Zea mays L.) become adapted to higher planting densities over the last 60 years. Traditional investigations into genetic control of leaf angle have focused on one leaf or the average of multiple leaves; as a result, our understanding of genetic control across multiple canopy levels is still limited. To address this, genetic mapping across four canopy levels was conducted in the present study to investigate the genetic control of leaf angle across the canopy. We developed two populations of doubled haploid lines derived from three inbreds with distinct leaf angle phenotypes. These populations were genotyped with genotyping-by-sequencing and phenotyped for leaf angle at four different canopy levels over multiple years. To understand how leaf angle changes across the canopy, the four measurements were used to derive three additional traits. Composite interval mapping was conducted with the leaf-specific measurements and the derived traits. A set of 59 quantitative trait loci (QTLs) were uncovered for seven traits, and two genomic regions were consistently detected across multiple canopy levels. Additionally, seven genomic regions were found to contain consistent QTLs with either relatively stable or dynamic effects at different canopy levels. Prioritizing the selection of QTLs with dynamic effects across the canopy will aid breeders in selecting maize hybrids with the ideal canopy architecture that continues to maximize yield on a per area basis under increasing planting densities.


Assuntos
Locos de Características Quantitativas , Zea mays , Zea mays/genética , Mapeamento Cromossômico , Fenótipo , Folhas de Planta/genética
2.
Plant Genome ; 14(3): e20155, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34596348

RESUMO

Plant phenotyping under field conditions plays an important role in agricultural research. Efficient and accurate high-throughput phenotyping strategies enable a better connection between genotype and phenotype. Unmanned aerial vehicle-based high-throughput phenotyping platforms (UAV-HTPPs) provide novel opportunities for large-scale proximal measurement of plant traits with high efficiency, high resolution, and low cost. The objective of this study was to use time series normalized difference vegetation index (NDVI) extracted from UAV-based multispectral imagery to characterize its pattern across development and conduct genetic dissection of NDVI in a large maize population. The time series NDVI data from the multispectral sensor were obtained at five time points across the growing season for 1,752 diverse maize accessions with a UAV-HTPP. Cluster analysis of the acquired measurements classified 1,752 maize accessions into two groups with distinct NDVI developmental trends. To capture the dynamics underlying these static observations, penalized-splines (P-splines) model was used to obtain genotype-specific curve parameters. Genome-wide association study (GWAS) using static NDVI values and curve parameters as phenotypic traits detected signals significantly associated with the traits. Additionally, GWAS using the projected NDVI values from the P-splines models revealed the dynamic change of genetic effects, indicating the role of gene-environment interplay in controlling NDVI across the growing season. Our results demonstrated the utility of ultra-high spatial resolution multispectral imagery, as that acquired using a UAV-based remote sensing, for genetic dissection of NDVI.


Assuntos
Tecnologia de Sensoriamento Remoto , Zea mays , Agricultura/métodos , Estudo de Associação Genômica Ampla , Tecnologia de Sensoriamento Remoto/métodos , Estações do Ano , Zea mays/genética
3.
Plant Genome ; 14(3): e20160, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34661990

RESUMO

Efficiently exploiting natural genetic diversity captured by accessions stored in genebanks is crucial to genetic improvement of major crops. Selecting accessions of interest from genebanks has traditionally required information from extensive and expensive evaluation; however, low-cost genotyping combined with genomic prediction have enabled us to generate predicted genetic merits for the entire set with targeted phenotypic evaluation of representative subsets. To explore this general approach, analytical assessment and empirical validation of the maize (Zea mays L.) association population (MAP) as a training population were conducted in the present study. Cross-validation within the MAP revealed mostly modest to strong predictive ability for 36 traits, generally in parallel with the square root of heritability. The MAP was then used to train the prediction models to generate genomic estimated breeding values (GEBVs) for the Ames Diversity Panel. Empirical validation conducted for nine traits across two validation populations confirmed the accuracy level indicated by the cross-validation of the training population. An upper bound for reliability (U value) was calculated for the accessions in the prediction population using genotypic data. The group of accessions with high U values generally had high predictive ability, even though the range of observed trait values was similar to the group of accessions with low U values. Our comprehensive analysis validated the general approach of turbocharging genebanks with genomics and genomic prediction. In addition, breeders and researchers can consider both GEBVs and U values to balance the needs of improving specific traits and broadening genetic diversity when selecting accessions from genebanks.


Assuntos
Melhoramento Vegetal , Zea mays , Genômica , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Zea mays/genética
4.
Plant Genome ; 12(1)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30951086

RESUMO

Maize ( L.) hybrids have transitioned to upright leaf angles (LAs) over the last 50 yr as maize yields and planting densities increased concurrently. Genetic mapping and a meta-analysis were conducted in the present study to dissect genetic factors controlling LA variation. We developed mapping populations using inbred lines B73 (Iowa Stiff Stalk Synthetic), PHW30 (Iodent, expired plant variety protection inbred), and Mo17 (Non-Stiff Stalk) that have distinct LA architectures and represent three important heterotic groups in the United States. These populations were genotyped using genotyping-by-sequencing (GBS), and phenotyped for LA in the F and F generation. Inclusive composite interval mapping across the two generations of the mapping populations revealed 12 quantitative trait loci (QTL), and a consistent QTL on chromosome 1 explained 10 to 17% of the phenotypic variance. To gain a comprehensive understanding of natural variations underlying LA variation, these detected QTL were compared with results from 19 previous studies. In total, 495 QTL were compiled and mapped into 143 genomic bins. A meta-analysis revealed that 58 genomic bins were associated with LA variation. Thirty-three candidate genes were identified in these genomic bins. Together, these results provide evidence of QTL controlling LA variation from inbred lines representing three important heterotic groups in the United States and a useful resource for future research into the molecular variants underlying specific regions of the genome associated with LA variation.


Assuntos
Cromossomos de Plantas , Folhas de Planta/genética , Zea mays/genética , Mapeamento Cromossômico , Genes de Plantas , Variação Genética , Fenótipo , Folhas de Planta/anatomia & histologia , Locos de Características Quantitativas , Zea mays/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...