Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(19): 28835-28845, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38592624

RESUMO

One of the current important issues is the management of used textiles. One method is recycling, but the processes are characterized by a high environmental burden and the products obtained are of lower quality. Used textiles can be successfully used to produce SRF (solid recovered fuels). This type of fuel is standardized by ISO 21640:2021. In the paper, an analysis of used textiles made from fibers of different origins was performed. These were acrylic, cotton, linen, polyester, wool, and viscose. A proximate and ultimate analysis of the investigated samples was performed, including mercury and chlorine content. The alternative fuel produced from used textiles will be characterized by acceptable parameters for consumers: a lower heating value at 20 MJ/kg (class 1-3 SRF), mercury content below 0.9 µg Hg/MJ (class 1 SRF), and a chlorine content below 0.2% (class 1 SRF). However, the very high sulfur content in wool (3.0-3.6%) and the high nitrogen content in acrylic may limit its use for power generation. The use of alternative fuel derived from used textiles may allow 3% of the coal consumed to be substituted in 2030. The reduction in carbon dioxide emissions from the substitution of coal with an alternative fuel derived from used textiles will depend on their composition. For natural and man-made cellulosic fibers, the emission factor can be assumed as for plant biomass, making their use for SRF production preferable. For synthetic fibers, the emission factor was estimated at the level of 102 and 82 gCO2/MJ for polyester and acrylic, respectively.


Assuntos
Têxteis , Reciclagem
2.
Waste Manag ; 126: 578-584, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33864986

RESUMO

The progressive decarbonisation of industry is leading to a reduction in coal consumption and the substitution for coal with other types of fuels, including waste-derived alternative fuels. These fuels are characterised by high variation in the content of highly toxic mercury. Co-combustion with coal can cause significant emissions, exceeding mercury emission limits. Various alternative fuels (refuse-derived fuel (RDF), waste paper, textiles, plastics, film, tires and their char, and sewage sludge) were examined for mercury content. The mercury content in analysed alternative fuels ranged from 0.4 to 92.0 µg Hg/MJ, with an average of 17.7 µg Hg/MJ. The fuels with the highest mercury content were RDFs (2.0-79.3 µg Hg/MJ) and sewage sludge (42.3-92.0 µg Hg/MJ). An acceptable amount of RDF added to hard coal which would remain within the emission limits was estimated to be 9-24% of the chemical energy in the blend. For sewage sludge, this amount was estimated to be 5-13%. For brown coal, with a much higher mercury content than hard coal, co-combustion with alternative fuels has a positive effect on reducing mercury emissions. It is possible to meet the mercury emission limits with a 95% contribution of the chemical energy coming from RDF. The blending of various types of waste supported by mild pyrolysis of high-mercury waste allows alternative fuels with relatively low mercury content to be produced. Such fuels may contribute a reduction in mercury emissions from coal-fired power plants in Poland.


Assuntos
Poluentes Atmosféricos , Mercúrio , Poluentes Atmosféricos/análise , Carvão Mineral/análise , Indústrias , Mercúrio/análise , Polônia , Centrais Elétricas
3.
Materials (Basel) ; 12(22)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739511

RESUMO

The adsorption of ketoprofen, naproxen, and diclofenac (non-steroidal anti-inflammatory drugs, NSAIDs) on halloysite/carbon nanocomposites and non-modified halloysite were investigated in this work. Halloysite/carbon nanocomposites were obtained through liquid phase impregnation and carbonization using halloysite as the template and saccharose as the carbon precursor. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectrometry (FT-IR), and low-temperature nitrogen adsorption method were employed to study the morphological and structural changes of the halloysite/carbon nanocomposites. The effects of contact time, initial concentration of adsorbates, pH of solution, and mass of adsorbent on the adsorption were studied. Adsorption mechanism was found to fit pseudo-second-order and intra-particle diffusion models. The obtained experimental adsorption data were well represented by the Langmuir multi-center adsorption model. Adsorption ability of halloysite/carbon nanocomposites was much higher for all the studied NSAIDs in comparison to non-modified halloysite. Optimized chemical structures of ketoprofen, naproxen, and diclofenac obtained by Density Functional Theory (DFT) calculation showed that charge distributions of these adsorbate molecules and their ions can be helpful to explain the details of adsorption mechanism of NSAIDs on halloysite/carbon nanocomposites.

4.
Environ Sci Pollut Res Int ; 26(22): 22254-22263, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31152419

RESUMO

The purpose of the paper was to determine the factor of mercury emission into the atmosphere by households in Poland. Research for a home coal-fired boiler typical of Polish conditions was carried out, which was conducted throughout the heating season. On the basis of assessment of the quantity of coal burned and mercury content contained therein, as well as of the mercury content in bottom ash, chimney soot, boiler deposits and their quantities, annual mercury emissions and its factor of emission into the atmosphere were defined. It was defined that the mercury emission factor for the investigated case of a single-family house is at a level of 0.56 µg/MJ. It was shown that 41.4% of the mercury contained in coal burned in a home heating boiler is emitted into the atmosphere, 57.0% is adsorbed by chimney soot, 0.3% by boiler heater deposits and 1.3% passes into bottom ash. Annual mercury emissions into the atmosphere from the single-family house concerned was 79 mg. Mercury emissions can be significantly reduced by households by separating any overgrowths with pyrite from coal. The solution proposed would enable a reduction in annual mercury emissions into the atmosphere in Poland from the domestic user sector by 58.5% (0.351 Mg). The factor of emission of mercury into the atmosphere would be 0.23 µg/MJ.


Assuntos
Carvão Mineral/análise , Ferro/análise , Mercúrio/análise , Fuligem/análise , Sulfetos/análise , Adsorção , Atmosfera , Cinza de Carvão , Calefação , Polônia , Centrais Elétricas
5.
Environ Sci Pollut Res Int ; 26(9): 8371-8382, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29532383

RESUMO

During the cokemaking process, a significant amount of mercury occurring in a coal blend is released to the atmosphere. One of the ways of reducing this emission is to reduce mercury content in a coal blend. This could be obtained through the coal washing process. The optimization of this process requires the knowledge of mercury occurrence in coal, especially in its inorganic constituents. A qualitative analysis of mercury occurrence in the inorganic constituents of Polish coking coals was performed using an electron probe microanalyzer (EPMA). For that purpose, selected samples of rejects and middling products derived from the washing process in dense media separators and jig concentrators were examined. The obtained results have confirmed a strong connection between mercury occurrence and the presence of sulfides (pyrite, marcasite, and chalcopyrite) in Polish coking coals. Significant amounts of mercury were also noticed for barite, siderite, and aluminosilicates. The highest value of mercury content, at the level of 0.100%, was obtained for marcasite. For the analyzed coals, the effectiveness of mercury removal in the washing process was determined by the forms of pyrite occurring in coal. The highest values of effectiveness of mercury removal were obtained in the case of coals for which the large framboidal pyrite aggregates with chalcopyrite overgrowths were noticed. It was also found that middling products were characterized by the occurrence of the Hg-rich overgrowths of pyrite on organic matter. To achieve a significant reduction in mercury content in clean coal, it is necessary to develop an effective method of removing this form of pyrite from hard coal.


Assuntos
Carvão Mineral/análise , Poluentes Ambientais/análise , Mercúrio/análise , Atmosfera , Coque/análise , Ferro , Polônia , Sulfetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...