Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766220

RESUMO

The decline of oocyte quality in aging but otherwise relatively healthy individuals compels a search for underlying mechanisms. Building upon a finding that exposure to male pheromone ascr#10 improves oocyte quality in C. elegans, we uncovered a regulatory cascade that promotes proliferation of oocyte precursors in adults and regulates oocyte quality. We found that the male pheromone promotes proliferation of oocyte precursors by upregulating LAG-2, a ligand of the Notch-like pathway in the germline stem cell niche. LAG-2 is upregulated by a TGFß-like ligand DAF-7 revealing similarity of regulatory mechanisms that promote germline proliferation in adults and larvae. A serotonin circuit that also regulates food search and consumption upregulates DAF-7 specifically in adults. The serotonin/DAF-7 signaling promotes germline expansion to compensate for oocyte expenditure which is increased by the male pheromone. Finally, we show that the earliest events in reproductive aging may be due to declining expression of LAG-2 and DAF-7. Our findings highlight neuronal signals that promote germline proliferation in response to the environment and argue that deteriorating oocyte quality may be due to reduced neuronal expression of key germline regulators.

2.
Mol Biol Evol ; 40(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37210586

RESUMO

Sex pheromones not only improve the reproductive success of the recipients, but also impose costs, such as a reduced life span. The underlying mechanisms largely remain to be elucidated. Here, we show that even a brief exposure to physiological amounts of the dominant Caenorhabditis elegans male pheromone, ascr#10, alters the expression of thousands of genes in hermaphrodites. The most dramatic effect on the transcriptome is the upregulation of genes expressed during oogenesis and the downregulation of genes associated with male gametogenesis. This result reveals a way in which social signals help to resolve the inherent conflict between spermatogenesis and oogenesis in a simultaneous hermaphrodite, presumably to optimally align reproductive function with the presence of potential mating partners. We also found that exposure to ascr#10 increased the risk of persistent intestinal infections in hermaphrodites due to pathological pharyngeal hypertrophy. Thus, our study reveals ways in which the male pheromone can not only have beneficial effects on the recipients' reproduction, but also cause harmful consequences that reduce life span.


Assuntos
Caenorhabditis elegans , Feromônios , Animais , Masculino , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Feromônios/metabolismo , Reprodução , Células Germinativas/metabolismo , Expressão Gênica
3.
Dev Biol ; 499: 24-30, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37121310

RESUMO

Declining germline quality is a major cause of reproductive senescence. Potential remedies could be found by studying regulatory pathways that promote germline quality. Several lines of evidence, including a C. elegans male pheromone ascr#10 that counteracts the effects of germline aging in hermaphrodites, suggest that the nervous system plays an important role in regulating germline quality. Inspired by the fact that serotonin mediates ascr#10 signaling, here we show that serotonin reuptake inhibitors recapitulate the effects of ascr#10 on the germline and promote healthy oocyte aging in C. elegans. Surprisingly, we found that pharmacological increase of serotonin signaling stimulates several developmental processes in D. melanogaster, including improved oocyte quality, although underlying mechanisms appear to be different between worms and flies. Our results reveal a plausibly conserved role for serotonin in maintaining germline quality and identify a class of therapeutic interventions using available compounds that could efficiently forestall reproductive aging.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Masculino , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Serotonina/metabolismo , Serotonina/farmacologia , Drosophila melanogaster/metabolismo , Oócitos/metabolismo , Células Germinativas/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
4.
bioRxiv ; 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36824927

RESUMO

Sex pheromones improve reproductive success, but also impose costs. Here we show that even brief exposure to physiological amounts of the dominant C. elegans male pheromone, ascr#10, alters the expression of thousands of genes in hermaphrodites. The most dramatic effect on the transcriptome was the upregulation of genes expressed during oogenesis and downregulation of genes associated with male gametogenesis. Among the detrimental effects of ascr#10 on hermaphrodites is the increased risk of persistent infections caused by pathological pharyngeal hypertrophy. Our results reveal a way in which social signals help to resolve the inherent conflict between spermatogenesis and oogenesis in a simultaneous hermaphrodite, presumably to optimally align reproductive function to the presence of potential mating partners. They also show that the beneficial effects of the pheromone are accompanied by harmful consequences that reduce lifespan.

5.
Proc Biol Sci ; 289(1987): 20220913, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36448283

RESUMO

Behaviour and physiology are altered in reproducing animals, but neuronal circuits that regulate these changes remain largely unknown. Insights into mechanisms that regulate and possibly coordinate reproduction-related traits could be gleaned from the study of sex pheromones that can improve the reproductive success of potential mating partners. In Caenorhabditis elegans, the prominent male pheromone, ascr#10, modifies reproductive behaviour and several aspects of reproductive physiology in hermaphrodite recipients, including improving oocyte quality. Here we show that a circuit that contains serotonin-producing and serotonin-uptaking neurons plays a key role in mediating effects of ascr#10 on germline development and egg laying behaviour. We also demonstrate that increased serotonin signalling promotes proliferation of germline progenitors in adult hermaphrodites. Our results establish a role for serotonin in maintaining germline quality and highlight a simple neuronal circuit that acts as a linchpin that couples food intake, mating behaviour, reproductive output, and germline renewal and provisioning.


Assuntos
Caenorhabditis elegans , Serotonina , Masculino , Animais , Células Germinativas , Oviposição , Fatores de Transcrição , Proliferação de Células
6.
Proc Natl Acad Sci U S A ; 119(21): e2015576119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35576466

RESUMO

Pheromones exchanged by conspecifics are a major class of chemical signals that can alter behavior, physiology, and development. In particular, males and females communicate with potential mating partners via sex pheromones to promote reproductive success. Physiological and developmental mechanisms by which pheromones facilitate progeny production remain largely enigmatic. Here, we describe how a Caenorhabditis elegans male pheromone, ascr#10, improves the oogenic germline. Before most signs of aging become evident, C. elegans hermaphrodites start producing lower-quality gametes characterized by abnormal morphology, increased rates of chromosomal nondisjunction, and higher penetrance of deleterious alleles. We show that exposure to the male pheromone substantially ameliorates these defects and reduces embryonic lethality. ascr#10 stimulates proliferation of germline precursor cells in adult hermaphrodites. Coupled to the greater precursor supply is increased physiological germline cell death, which is required to improve oocyte quality in older mothers. The hermaphrodite germline is sensitive to the pheromone only during a time window, comparable in duration to a larval stage, in early adulthood. During this period, prereproductive adults assess the suitability of the environment for reproduction. Our results identify developmental events that occur in the oogenic germline in response to a male pheromone. They also suggest that the opposite effects of the pheromone on gamete quality and maternal longevity arise from competition over resource allocation between soma and the germline.


Assuntos
Caenorhabditis elegans , Senescência Celular , Oócitos , Oogênese , Atrativos Sexuais , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Feminino , Masculino , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Oogênese/efeitos dos fármacos , Oogênese/fisiologia , Atrativos Sexuais/farmacologia , Atrativos Sexuais/fisiologia
7.
Elife ; 92020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32573431

RESUMO

The maternal-to-zygotic transition (MZT) is a conserved step in animal development, where control is passed from the maternal to the zygotic genome. Although the MZT is typically considered from its impact on the transcriptome, we previously found that three maternally deposited Drosophila RNA-binding proteins (ME31B, Trailer Hitch [TRAL], and Cup) are also cleared during the MZT by unknown mechanisms. Here, we show that these proteins are degraded by the ubiquitin-proteasome system. Marie Kondo, an E2 conjugating enzyme, and the E3 CTLH ligase are required for the destruction of ME31B, TRAL, and Cup. Structure modeling of the Drosophila CTLH complex suggests that substrate recognition is different than orthologous complexes. Despite occurring hours earlier, egg activation mediates clearance of these proteins through the Pan Gu kinase, which stimulates translation of Kdo mRNA. Clearance of the maternal protein dowry thus appears to be a coordinated, but as-yet underappreciated, aspect of the MZT.


Bestselling author and organizing consultant Marie Kondo has helped people around the world declutter their homes by getting rid of physical items that do not bring them joy. Keeping the crowded environment inside a living cell organized also requires work and involves removing molecules that are no longer needed. A fertilized egg cell, for example, contains molecules from the mother that regulate the initial stages as it develops into an embryo. Later on, the embryo takes control of its own development by destroying these inherited molecules and switches to making its own instead. This process is called the maternal-to-zygotic transition. The molecules passed from the mother to the egg cell include proteins and messenger RNAs (molecules that include the coded instructions to make new proteins). Previous research has begun to reveal how the embryo destroys the mRNAs it inherits from its mother and how it starts to make its own. Yet almost nothing is known about how an embryo gets rid of its mother's proteins. To address this question, Zavortink, Rutt, Dzitoyeva et al. used an approach known as an RNA interference screen to identify factors required to destroy three maternal proteins in fruit fly embryos. The experiments helped identify one enzyme that worked together with another larger enzyme complex to destroy the maternal proteins. This enzyme belongs to a class of enzymes known as ubiquitin-conjugating enzymes (or E2 enzymes) and it was given the name "Kdo", short for "Marie Kondo". Further experiments showed that the mRNAs that code for the Kdo enzyme were present in unfertilized eggs, but in a repressed state that prevented the eggs from making the enzyme. Once an egg started to develop into an embryo, these mRNAs became active and the embryo started to make Kdo enzymes. This led to the three maternal proteins being destroyed during the maternal-to-zygotic transition. These findings reveal a new pathway that regulates the destruction of maternal proteins as the embryo develops. The next challenge will be identifying other maternal proteins that do not "spark joy" and understanding the role their destruction plays in the earliest events of embryonic development.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Zigoto/metabolismo , Animais , RNA Helicases DEAD-box/metabolismo , Drosophila melanogaster/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ribonucleoproteínas/metabolismo , Ubiquitina/metabolismo
8.
Transl Psychiatry ; 9(1): 34, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728347

RESUMO

Adolescent alcohol drinking is known to contribute to the development and severity of alcohol use disorders (AUDs) later in adulthood. Recent studies have shown that long non-coding RNAs (lncRNAs) are critical for brain development and synaptic plasticity. One such lncRNA is natural occurring brain-derived neurotrophic factor antisense (BDNF-AS) that has been shown to regulate BDNF expression. The role of BDNF-AS lncRNA in the molecular mechanisms of AUD is unknown. Here, we evaluated the expression and functional role of BDNF-AS in postmortem amygdala of either early onset or late onset alcoholics (individuals who began drinking before or after 21 years of age, respectively) and age-matched control subjects. BDNF-AS expression is increased in early onset but not in late onset AUD amygdala and appears to be regulated epitranscriptomically via decreased N6-methyladenosine on BDNF-AS. Upregulation of BDNF-AS is associated with a significant decrease in BDNF expression and increased recruitment of EZH2, which deposits repressive H3K27 trimethylation (H3K27me3) at regulatory regions in the BDNF gene in the early onset AUD group. Drinking during adolescence also contributed to significant decreases in activity-regulated cytoskeleton-associated protein (ARC) expression which also appeared to be mediated by increased EZH2 deposition of repressive H3K27me3 at the ARC synaptic activity response element. These results suggest an important role for BDNF-AS in the regulation of synaptic plasticity via epigenetic reprogramming in the amygdala of AUD subjects who began drinking during adolescence.


Assuntos
Alcoolismo/genética , Tonsila do Cerebelo/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , RNA Longo não Codificante/metabolismo , Estudos de Casos e Controles , Proteínas do Citoesqueleto/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Plasticidade Neuronal/fisiologia , RNA Longo não Codificante/genética
9.
Biol Psychiatry ; 77(6): 589-96, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25444166

RESUMO

BACKGROUND: Prenatal stress (PRS) is considered a risk factor for several neurodevelopmental disorders including schizophrenia (SZ). An animal model involving restraint stress of pregnant mice suggests that PRS induces epigenetic changes in specific GABAergic and glutamatergic genes likely to be implicated in SZ, including the gene for brain-derived neurotrophic factor (BDNF). METHODS: Studying adult offspring of pregnant mice subjected to PRS, we explored the long-term effects of PRS on behavior and on the expression of key chromatin remodeling factors including DNA methyltransferase 1, ten-eleven-translocation hydroxylases, methyl CpG binding protein 2, histone deacetylases, and histone methyltransferases and demethylase in the frontal cortex and hippocampus. We also measured the expression of BDNF. RESULTS: Adult PRS offspring demonstrate behavioral abnormalities suggestive of SZ and molecular changes similar to changes seen in postmortem brains of patients with SZ. This includes a significant increase in DNA methyltransferase 1 and ten-eleven-translocation hydroxylase 1 in the frontal cortex and hippocampus but not in cerebellum; no changes in histone deacetylases, histone methyltransferases and demethylases, or methyl CpG binding protein 2, and a significant decrease in Bdnf messenger RNA variants. The decrease of the corresponding Bdnf transcript level was accompanied by an enrichment of 5-methylcytosine and 5-hydroxymethylcytosine at Bdnf gene regulatory regions. In addition, the expression of Bdnf transcripts (IV and IX) correlated positively with social approach in both PRS mice and nonstressed mice. CONCLUSIONS: Because patients with psychosis and PRS mice show similar epigenetic signature, PRS mice may be a suitable model for understanding the behavioral and molecular epigenetic changes observed in patients with SZ.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Epigênese Genética , Efeitos Tardios da Exposição Pré-Natal , Esquizofrenia/genética , Estresse Psicológico/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cromatina/metabolismo , Metilação de DNA , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Atividade Motora , Gravidez , Restrição Física , Esquizofrenia/fisiopatologia , Comportamento Social , Estresse Psicológico/fisiopatologia
10.
J Lipids ; 2013: 297932, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24062952

RESUMO

In exploring the utility of double-stranded RNA (dsRNA) injections for silencing the PAR-domain protein 1 (Pdp1) gene in adult Drosophila, we noticed a dramatic loss of fat tissue lipids. To verify that our RNAi approach produced the expected Pdp1 knockdown, the abdominal fat tissues sections were stained with PDP1 antibodies. PDP1 protein immunostaining was absent in flies injected with dsRNA targeting a sequence common to all known Pdp1 isoforms. Subsequent experiments revealed that lipid staining is reduced in flies injected with dsRNA against Pdp1 γ (fat body specific) and not against Pdp1 ε (predominantly involved in circadian mechanisms). Drosophila PDP1 γ protein shows a high homology to mammalian thyrotroph embryonic factor (TEF), albumin D site-binding protein (DBP), and hepatic leukemia factor (HLF) transcription factors. In an in vitro model of drug- (olanzapine-) induced adiposity in mouse 3T3-L1 cells, the mRNA content of HLF but not TEF and DBP was increased by the drug treatment. A knockdown of the HLF mRNA by transfecting the cultures with HLF dsRNA significantly reduced their lipid content. Furthermore, the HLF RNAi prevented olanzapine from increasing the cell lipid content. These results suggest that the PDP1/HLF system may play a role in physiological and drug-influenced lipid regulation.

11.
J Lipids ; 2013: 864593, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762565

RESUMO

Experiments were performed in 3T3-L1 preadipocytes differentiated in vitro into adipocytes. Cells were treated with olanzapine and a 5-lipoxygenase (5-LOX) activating protein (FLAP) inhibitor MK-886. Lipid content was measured using an Oil Red O assay; 5-LOX and FLAP mRNA content was measured using quantitative real-time PCR; the corresponding protein contents were measured using quantitative Western blot assay. Olanzapine did not affect the cell content of 5-LOX mRNA and protein; it decreased FLAP mRNA and protein content at day five but not 24 hours after olanzapine addition. In the absence of MK-886, low concentrations of olanzapine increased lipid content only slightly, whereas a 56% increase was induced by 50 µ M olanzapine. A 5-day cotreatment with 10 µ M MK-886 potentiated the lipid increasing action of low concentrations of olanzapine. In contrast, in the presence of 50 µ M olanzapine nanomolar and low micromolar concentrations of MK-886 reduced lipid content. These data suggest that FLAP system in adipocytes is affected by olanzapine and that it may modify how these cells respond to the second-generation antipsychotic drugs (SGADs). Clinical studies could evaluate whether the FLAP/5-LOX system could play a role in setting a variable individual susceptibility to the metabolic side effects of SGADs.

12.
Biomol Concepts ; 4(4): 381-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25436587

RESUMO

Mitochondria, intracellular organelles with their own genome, have been shown capable of interacting with epigenetic mechanisms in at least four different ways. First, epigenetic mechanisms that regulate the expression of nuclear genome influence mitochondria by modulating the expression of nuclear-encoded mitochondrial genes. Second, a cell-specific mitochondrial DNA content (copy number) and mitochondrial activity determine the methylation pattern of nuclear genes. Third, mitochondrial DNA variants influence the nuclear gene expression patterns and the nuclear DNA (ncDNA) methylation levels. Fourth and most recent line of evidence indicates that mitochondrial DNA similar to ncDNA also is subject to epigenetic modifications, particularly by the 5-methylcytosine and 5-hydroxymethylcytosine marks. The latter interaction of mitochondria with epigenetics has been termed 'mitochondrial epigenetics'. Here we summarize recent developments in this particular area of epigenetic research. Furthermore, we propose the term 'mitoepigenetics' to include all four above-noted types of interactions between mitochondria and epigenetics, and we suggest a more restricted usage of the term 'mitochondrial epigenetics' for molecular events dealing solely with the intra-mitochondrial epigenetics and the modifications of mitochondrial genome.


Assuntos
Epigênese Genética , Epigenômica , Mitocôndrias/genética , Animais , Biomarcadores , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Metilação de DNA , DNA Mitocondrial , Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Genoma Mitocondrial , Humanos , Mitocôndrias/efeitos dos fármacos
13.
Eur J Pharmacol ; 690(1-3): 51-9, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-22728245

RESUMO

Valproic acid (valproate), an anticonvulsant and a mood stabilizer, is a potent histone deacetylase inhibitor and a widely utilized pharmacological tool for neuroepigenetic research including DNA methylation. However, only nuclear but not mitochondrial DNA (mtDNA) has been investigated for the effects of valproate on the formation of 5-methylcytosine (5 mC) and 5-hydroxymethylcytosine (5 hmC). Using mouse 3T3-L1 cells, we investigated the effects of short (1 day) and prolonged (3 days) valproate treatment on global mtDNA 5 mC content, global and mtDNA sequence-specific 5 hmC content, mRNA levels for ten-eleven-translocation (TET) enzymes involved in 5 hmC formation, and the mitochondrial content of TET proteins. Only 5 hmC but not 5 mC content in mtDNA was affected (decreased) by valproate, and only after the prolonged treatment. This action of valproate was mimicked by MS-275, a class I histone deacetylase inhibitor. The prolonged but not the short valproate treatment decreased the expression of Tet1 mRNA and reduced the mitochondrial content of the TET1 protein. Hence, a likely scenario for a valproate-induced 5 hmC decrease in mtDNA may involve nuclear histone deacetylase inhibition (mitochondria do not contain histones) causing the initial increase of Tet1 transcription, which is followed by a delayed compensatory decrease of Tet1 expression and a reduced presence of TET1 protein in mitochondria. Further research is needed to elucidate the functional implications of epigenetic modifications of mtDNA. The observed effects of valproate on mitochondrial epigenetics may have implications for a better understanding of both therapeutic and unwanted effects of this drug and possibly other histone deacetylase inhibitors.


Assuntos
Anticonvulsivantes/efeitos adversos , Epigênese Genética/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Ácido Valproico/efeitos adversos , Células 3T3-L1 , 5-Metilcitosina/metabolismo , Animais , Sequência de Bases , Benzamidas/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Citosina/análogos & derivados , Citosina/metabolismo , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Camundongos , Dados de Sequência Molecular , Piridinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Biomol Concepts ; 3(2): 107-115, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22639700

RESUMO

Neuroepigenetics, which includes nuclear DNA modifications such as 5-methylcytosine and 5-hydoxymethylcytosine and modifications of nuclear proteins such as histones, is emerging as the leading field in molecular neuroscience. Historically, a functional role for epigenetic mechanisms, including in neuroepigenetics, has been sought in the area of the regulation of nuclear transcription. However, one important compartment of mammalian cell DNA, different from nuclear but equally important for physiological and pathological processes (including in the brain), mitochondrial DNA has for the most part not had a systematic epigenetic characterization. The importance of mitochondria and mitochondrial DNA (particularly its mutations) in central nervous system physiology and pathology has long been recognized. Only recently have mechanisms of mitochondrial DNA methylation and hydroxymethylation, including the discovery of mitochondrial DNA-methyltransferases and the presence and the functionality of 5-methylcytosine and 5-hydroxymethylcytosine in mitochondrial DNA (e.g., in modifying the transcription of mitochondrial genome), been unequivocally recognized as a part of mammalian mitochondrial physiology. Here we summarize for the first time evidence supporting the existence of these mechanisms and we propose the term "mitochondrial epigenetics" to be used when referring to them. Currently, neuroepigenetics does not include mitochondrial epigenetics - a gap that we expect to close in the near future.

15.
Neurobiol Aging ; 33(12): 2881-91, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22445327

RESUMO

Nuclear epigenetics of the mammalian brain is modified during aging. Little is known about epigenetic modifications of mitochondrial DNA (mtDNA). We analyzed brain samples of 4- and 24-month-old mice and found that aging decreased mtDNA 5-hydroxymethylcytosine (5hmC) but not 5-methylcytosine (5mC) levels in the frontal cortex but not the cerebellum. Transcript levels of selected mtDNA-encoded genes increased during aging in the frontal cortex only. Aging affected the expression of enzymes involved in 5-methylcytosine and 5-hydroxymethylcytosine synthesis (mitochondrial DNA methyltransferase 1 [mtDNMT1] and ten-eleven-translocation [TET]1-TET3, respectively). In the frontal cortex, aging decreased mtDNMT1 messenger RNA (mRNA) levels without affecting TET1-TET3 mRNAs. In the cerebellum, TET2 and TET3 mRNA content was increased but mtDNMT1 mRNA was unaffected. Using Western immunoblotting of samples from primary neuronal cultures, we found TET immunoreactivity in the mitochondrial fraction. At the single cell level, TET immunoreactivity was detected in the nucleus and in the perinuclear/intraneurite areas where it frequently colocalized with a mitochondrial marker. Our results demonstrated the presence and susceptibility to aging of mitochondrial epigenetic mechanisms in the mammalian brain.


Assuntos
Envelhecimento/metabolismo , Encéfalo/ultraestrutura , Citosina/análogos & derivados , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Mitocôndrias/metabolismo , 5-Metilcitosina/análogos & derivados , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Células Cultivadas , Citosina/metabolismo , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Ensaio de Imunoadsorção Enzimática , Microdissecção e Captura a Laser , Masculino , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/ultraestrutura , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
16.
Restor Neurol Neurosci ; 30(3): 237-45, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22426040

RESUMO

PURPOSE: Aging is believed to affect epigenetic marking of brain DNA with 5-methylcytosine (5mC) and possibly via the 5mC to 5-hydroxymethylcytosine (5hmC) conversion by TET (ten-eleven translocation) enzymes. We investigated the impact of aging on hippocampal DNA 5-hydroxymethylation including in the sequence of aging-susceptible 5-lipoxygenase (5-LOX) gene. METHODS: Hippocampal samples were obtained from C57BL6 mice. Cellular 5hmC localization was determined by immunofluorescence. The global 5mC and 5hmC contents were measured with the corresponding ELISA. The 5-LOX 5hmC content was measured using a glucosyltransferase/enzymatic restriction digest assay. TET mRNA was measured using qRT-PCR. RESULTS: Global hippocampal 5hmC content increased during aging as did the 5hmC content in the 5-LOX gene. This occurred without alterations of TET1-3 mRNAs and without changes in the content of 8-hydroxy-2-deoxy-guanosine, a marker of non-enzymatic DNA oxidation. CONCLUSIONS: The aging-associated increase of hippocampal 5hmC content (global and 5-LOX) appears to be unrelated to oxidative stress. It may be driven by an altered activity but not by the increased expression of the three TET enzymes. Global 5hmC content was increased during aging in the absence of 5mC decrease, suggesting that 5hmC could act as an epigenetic marker and not only as an intermediary in DNA demethylation. Further research is needed to elucidate the functional implications of the impact of aging on hippocampal cytosine hydroxymethylation.


Assuntos
Envelhecimento/fisiologia , Citosina/análogos & derivados , Hipocampo/metabolismo , 5-Metilcitosina/metabolismo , Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Araquidonato 5-Lipoxigenase/biossíntese , Araquidonato 5-Lipoxigenase/genética , Citosina/metabolismo , Metilação de DNA/fisiologia , Modelos Animais de Doenças , Epigênese Genética/fisiologia , Hipocampo/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima/genética
17.
Prog Neuropsychopharmacol Biol Psychiatry ; 35(2): 315-9, 2011 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-20691748

RESUMO

Typically, cyclooxygenases (COXs) and 5-lipoxygenase (5-LOX), enzymes that generate biologically active lipid molecules termed eicosanoids, are considered inflammatory. Hence, their putative role in Alzheimer's disease (AD) has been explored in the framework of possible inflammatory mechanisms of AD pathobiology. More recent data indicate that these enzymes and the biologically active lipid molecules they generate could influence the functioning of the central nervous system and the pathobiology of neurodegenerative disorders such as AD via mechanisms different from classical inflammation. These mechanisms include the cell-specific localization of COXs and 5-LOX in the brain, the type of lipid molecules generated by the activity of these enzymes, the type and the localization of receptors selective for a type of lipid molecule, and the putative interactions of the COXs and 5-LOX pathways with intracellular components relevant for AD such as the gamma-secretase complex. Considering the importance of these multiple and not necessarily inflammatory mechanisms may help us delineate the exact nature of the involvement of the brain COXs and 5-LOX in AD and would reinvigorate the search for novel targets for AD therapy.


Assuntos
Doença de Alzheimer/enzimologia , Araquidonato 5-Lipoxigenase/metabolismo , Leucotrienos/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Prostaglandinas/metabolismo , Envelhecimento , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Araquidonato 5-Lipoxigenase/genética , Encéfalo/enzimologia , Encéfalo/fisiopatologia , Diagnóstico , Modelos Animais de Doenças , Humanos , Camundongos , Terapia de Alvo Molecular , Prostaglandina-Endoperóxido Sintases/genética , Receptores de Leucotrienos/metabolismo , Receptores de Prostaglandina/metabolismo
18.
Adv Pharmacol ; 58: 453-64, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20655492

RESUMO

Drosophila melanogaster, the "fruit fly," is being increasingly used as an experimental model in neurosciences, including neuropharmacology. The advantages of Drosophila over typical mammalian models in neuropharmacology include better access to genetic manipulation and the availability of almost unlimited numbers of experimental subjects at relatively low cost and with minimal regulatory restrictions. Nevertheless, one should remain cognizant of the substantial differences between insects and mammals. Insects, including Drosophila, utilize gamma-aminobutyric acid (GABA) as a neurotransmitter and express both ionotropic GABA receptors and metabotropic GABA-B receptors. Before cloning of the Drosophila GABA-B receptors (subunits 1-3), it had been assumed that flies did not express these receptors since baclofen, a typical agonist for mammalian GABA-B receptors, does not produce any effects in insects. Subsequently, it was confirmed that cloned Drosophila GABA-B receptors exhibit a unique pharmacology. Using Drosophila as a model, it has been shown that GABA-B receptors are involved in the behavioral actions of alcohol and gamma-hydroxybutyric acid, and possibly in pain. Furthermore, recent research suggests that in flies these receptors may play an important developmental role and that they participate in olfaction and in regulation of circadian rhythms.


Assuntos
Drosophila melanogaster/metabolismo , Receptores de GABA-B/metabolismo , Animais , Modelos Animais , Modelos Biológicos , Ácido gama-Aminobutírico/metabolismo
19.
Neural Plast ; 2009: 209596, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20052386

RESUMO

The expression of 5-lipoxygenase (5-LOX) is affected by aging and regulated by epigenetic mechanisms including DNA methylation. We used methylation-sensitive restriction endonucleases (AciI, BstUI, HpaII, and HinP1I) to assess 5-LOX DNA methylation in brain and heart tissue samples from young (2 months) and old (22 months) mice. We also measured mRNA content for 5-LOX and the DNA methyltransferases DNMT1 and DNMT3a. In young mice, the 5-LOX mRNA content was significantly greater in the heart compared to the brain; 5-LOX DNA methylation was lower, except in the AciI assay in which it was higher in the heart. Aging decreased 5-LOX mRNA content in the heart and increased it in the brain. Aging also increased 5-LOX DNA methylation and this effect was site- (i.e., enzyme) and tissue-specific. Generally, DNMT1 and DNMT3a mRNA content was lower in the brain regions compared to the heart; the only effect of aging was observed in the mRNA content of DNMT3a, which was decreased in the heart of old mice. These results indicate a complex tissue-specific and aging-dependent interplay between the DNA methylation system and 5-LOX mRNA content. Interpretation of this data must take into account that the tissue samples contained a mixture of various cell types.


Assuntos
Envelhecimento/metabolismo , Araquidonato 5-Lipoxigenase/genética , Encéfalo/enzimologia , Metilação de DNA/genética , Miocárdio/enzimologia , RNA Mensageiro/metabolismo , Envelhecimento/genética , Animais , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Regulação para Baixo/genética , Epigênese Genética/fisiologia , Inativação Gênica/fisiologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/fisiopatologia , Leucotrienos/biossíntese , Lipoxinas/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , RNA Mensageiro/análise , Mapeamento por Restrição/métodos
20.
Brain Res ; 1227: 19-25, 2008 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-18621029

RESUMO

Although G protein-coupled MT1 and MT2 melatonin receptors are expressed in neurons of the mammalian brain including in humans, relatively little is known about the influence of native MT1 and MT2 melatonin receptors on neuronal melatonin signaling. Whereas human cerebellar granule cells (CGC) express only MT1 receptors, mouse CGC express both MT1 and MT2. To study the effects of altered neuronal MT1/MT2 receptors, we used CGC cultures prepared from immature cerebella of wild-type mice (MT1/MT2 CGC) and MT1- and MT2-knockout mice (MT2 and MT1 CGC, respectively). Here we report that in MT1/MT2 cultures, physiological (low nanomolar) concentrations of melatonin decrease the activity (phosphorylation) of extracellular-signal-regulated kinase (ERK) whereas a micromolar concentration was ineffective. Both MT1 and MT2 deficiencies transformed the melatonin inhibition of ERK into melatonin-induced ERK activation. In MT1/MT2 CGC, 1 nM melatonin inhibited serine/threonine kinase Akt, whereas in MT1 and MT2 CGC, this concentration was ineffective. Under these conditions, both MT1 and MT2 deficiencies prevented melatonin from inhibiting forskolin-stimulated cAMP levels and cFos immunoreactivity. We demonstrated that selective removal of native neuronal MT1 and MT2 receptors has a profound effect on the intracellular actions of low/physiological concentrations of melatonin. Since the expression of MT1 and MT2 receptors is cell-type-specific and species-dependent, we postulate that the pattern of expression of neuronal melatonin receptor types in different brain areas and cells could determine the capabilities of endogenous melatonin in regulating neuronal functioning.


Assuntos
Cerebelo/citologia , Melatonina/farmacologia , Neurônios/efeitos dos fármacos , Receptor MT1 de Melatonina/fisiologia , Receptor MT2 de Melatonina/fisiologia , Transdução de Sinais , Análise de Variância , Animais , Animais Recém-Nascidos , Western Blotting , Células Cultivadas , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imuno-Histoquímica , Melatonina/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptor MT1 de Melatonina/deficiência , Receptor MT1 de Melatonina/genética , Receptor MT2 de Melatonina/deficiência , Receptor MT2 de Melatonina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...