Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
OMICS ; 25(1): 13-22, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32857671

RESUMO

Coronavirus disease-2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is evolving across the world and new treatments are urgently needed as with vaccines to prevent the illness and stem the contagion. The virus affects not only the lungs but also other tissues, thus lending support to the idea that COVID-19 is a systemic disease. The current vaccine and treatment development strategies ought to consider such systems medicine perspectives rather than a narrower focus on the lung infection only. COVID-19 is associated with elevated levels of the inflammatory cytokines such as interleukin-6 (IL-6), IL-10, and interferon-gamma (IFN-γ). Elevated levels of cytokines and the cytokine storm have been linked to fatal disease. This suggests new therapeutic strategies through blocking the cytokine storm. IL-6 is one of the major cytokines associated with the cytokine storm. IL-6 is also known to display pleiotropic/diverse pathophysiological effects. We suggest the blockage of IL-6 signaling and its downstream mediators such as Janus kinases (JAKs), and signal transducer and activators of transcription (STATs) offer potential hope for the treatment of severe cases of COVID-19. Thus, repurposing of already approved IL-6-JAK-STAT signaling inhibitors as well as other anti-inflammatory drugs, including dexamethasone, is under development for severe COVID-19 cases. We conclude this expert review by highlighting the potential role of precision herbal medicines, for example, the Cannabis sativa, provided that omics technologies can be utilized to build a robust scientific evidence base on their clinical safety and efficacy. Precision herbal medicine buttressed by omics systems science would also help identify new molecular targets for drug discovery against COVID-19.


Assuntos
Antivirais/uso terapêutico , Produtos Biológicos/uso terapêutico , Tratamento Farmacológico da COVID-19 , COVID-19/metabolismo , Medicina Herbária , Interleucina-6/metabolismo , SARS-CoV-2/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Antivirais/farmacologia , Produtos Biológicos/farmacologia , COVID-19/complicações , COVID-19/virologia , Ensaios Clínicos como Assunto , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/etiologia , Citocinas/metabolismo , Reposicionamento de Medicamentos , Medicina Herbária/métodos , Humanos
3.
OMICS ; 24(5): 247-263, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31313972

RESUMO

Historically, the term "artificial intelligence" dates to 1956 when it was first used in a conference at Dartmouth College in the US. Since then, the development of artificial intelligence has in part been shaped by the field of neuroscience. By understanding the human brain, scientists have attempted to build new intelligent machines capable of performing complex tasks akin to humans. Indeed, future research into artificial intelligence will continue to benefit from the study of the human brain. While the development of artificial intelligence algorithms has been fast paced, the actual use of most artificial intelligence (AI) algorithms in biomedical engineering and clinical practice is still markedly below its conceivably broader potentials. This is partly because for any algorithm to be incorporated into existing workflows it has to stand the test of scientific validation, clinical and personal utility, application context, and is equitable as well. In this context, there is much to be gained by combining AI and human intelligence (HI). Harnessing Big Data, computing power and storage capacities, and addressing societal issues emergent from algorithm applications, demand deploying HI in tandem with AI. Very few countries, even economically developed states, lack adequate and critical governance frames to best understand and steer the AI innovation trajectories in health care. Drug discovery and translational pharmaceutical research stand to gain from AI technology provided they are also informed by HI. In this expert review, we analyze the ways in which AI applications are likely to traverse the continuum of life from birth to death, and encompassing not only humans but also all animal, plant, and other living organisms that are increasingly touched by AI. Examples of AI applications include digital health, diagnosis of diseases in newborns, remote monitoring of health by smart devices, real-time Big Data analytics for prompt diagnosis of heart attacks, and facial analysis software with consequences on civil liberties. While we underscore the need for integration of AI and HI, we note that AI technology does not have to replace medical specialists or scientists and rather, is in need of such expert HI. Altogether, AI and HI offer synergy for responsible innovation and veritable prospects for improving health care from prevention to diagnosis to therapeutics while unintended consequences of automation emergent from AI and algorithms should be borne in mind on scientific cultures, work force, and society at large.


Assuntos
Engenharia Biomédica/métodos , Inteligência/fisiologia , Medicina/métodos , Algoritmos , Animais , Inteligência Artificial , Automação/métodos , Big Data , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...