Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (181)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35311814

RESUMO

One-dimensional (1-D) sliding of transcription factor (TF) protein along DNA is essential for facilitated diffusion of the TF to locate target DNA site for genetic regulation. Detecting base-pair (bp) resolution of the TF sliding or stepping on the DNA is still experimentally challenging. We have recently performed all-atom molecular dynamics (MD) simulations capturing spontaneous 1-bp stepping of a small WRKY domain TF protein along DNA. Based on the 10 µs WRKY stepping path obtained from such simulations, the protocol here shows how to conduct more extensive conformational samplings of the TF-DNA systems, by constructing the Markov state model (MSM) for the 1-bp protein stepping, with various numbers of micro- and macro-states tested for the MSM construction. In order to examine processive 1-D diffusional search of the TF protein along DNA with structural basis, the protocol further shows how to conduct coarse-grained (CG) MD simulations to sample long-time scale dynamics of the system. Such CG modeling and simulations are particularly useful to reveal the protein-DNA electrostatic impacts on the processive diffusional motions of the TF protein above tens of microseconds, in comparison with sub-microseconds to microseconds protein stepping motions revealed from the all-atom simulations.


Assuntos
Simulação de Dinâmica Molecular , Fatores de Transcrição , DNA/química , Difusão , Fatores de Transcrição/química
2.
Biophys J ; 121(4): 582-595, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35031277

RESUMO

In this work, we computationally investigated how a viral RNA polymerase (RNAP) from bacteriophage T7 evolves into RNAP variants under lab-directed evolution to switch recognition from T7 promoter to T3 promoter in transcription initiation. We first constructed a closed initiation complex for the wild-type T7 RNAP and then for six mutant RNAPs discovered from phage-assisted continuous evolution experiments. All-atom molecular dynamics simulations up to 1 µs each were conducted on these RNAPs in a complex with the T7 and T3 promoters. Our simulations show notably that protein-DNA electrostatic interactions or stabilities at the RNAP-DNA promoter interface well dictate the promoter recognition preference of the RNAP and variants. Key residues and structural elements that contribute significantly to switching the promoter recognition were identified. Followed by a first point mutation N748D on the specificity loop to slightly disengage the RNAP from the promoter to hinder the original recognition, we found an auxiliary helix (206-225) that takes over switching the promoter recognition upon further mutations (E222K and E207K) by forming additional charge interactions with the promoter DNA and reorientating differently on the T7 and T3 promoters. Further mutations on the AT-rich loop and the specificity loop can fully switch the RNAP-promoter recognition to the T3 promoter. Overall, our studies reveal energetics and structural dynamics details along an exemplary directed evolutionary path of the phage RNAP variants for a rewired promoter recognition function. The findings demonstrate underlying physical mechanisms and are expected to assist knowledge and data learning or rational redesign of the protein enzyme structure function.


Assuntos
Bacteriófagos , Bacteriófago T7/genética , Bacteriófagos/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regiões Promotoras Genéticas , RNA Viral , Transcrição Gênica
3.
Natl Sci Rev ; 8(4): nwaa299, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34691619

RESUMO

Chih-chen Wang is a distinguished biochemist and molecular biologist, and an Academician of the Chinese Academy of Sciences (CAS). From 2008 to 2013, she was a vice chairperson of the National Committee of the Chinese People's Political Consultative Conference (CPPCC). As a young researcher, Wang participated in research on insulin. Since the 1990s, she has been focusing on the study of protein folding, and has initiated a new research area of isomerase and molecular chaperones in China. In this interview, Chih-chen Wang elaborates on the social responsibility of scientists by drawing on both her scientific research and CPPCC experience. In Wang's view, what China really needs are intellectuals with independent thinking and strong social responsibility, who are able to provide the government valuable advice and communicate with the public to increase society's scientific literacy. She also hopes that female scientists can be more confident and gain greater attention and support from society.

4.
Biophys J ; 120(15): 3126-3137, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34197800

RESUMO

Cas1 and Cas2 are highly conserved proteins across clustered-regularly-interspaced-short-palindromic-repeat-Cas systems and play a significant role in protospacer acquisition. Based on crystal structure of twofold symmetric Cas1-Cas2 in complex with dual-forked protospacer DNA (psDNA), we conducted all-atom molecular dynamics simulations to study the psDNA binding, recognition, and response to cleavage on the protospacer-adjacent-motif complementary sequence, or PAMc, of Cas1-Cas2. In the simulation, we noticed that two active sites of Cas1 and Cas1' bind asymmetrically to two identical PAMc on the psDNA captured from the crystal structure. For the modified psDNA containing only one PAMc, as that to be recognized by Cas1-Cas2 in general, our simulations show that the non-PAMc association site of Cas1-Cas2 remains destabilized until after the stably bound PAMc being cleaved at the corresponding association site. Thus, long-range correlation appears to exist upon the PAMc cleavage between the two active sites (∼10 nm apart) on Cas1-Cas2, which can be allosterically mediated by psDNA and Cas2 and Cas2' in bridging. To substantiate such findings, we conducted repeated runs and further simulated Cas1-Cas2 in complex with synthesized psDNA sequences psL and psH, which have been measured with low and high frequency in acquisition, respectively. Notably, such intersite correlation becomes even more pronounced for the Cas1-Cas2 in complex with psH but remains low for the Cas1-Cas2 in complex with psL. Hence, our studies demonstrate that PAMc recognition and cleavage at one active site of Cas1-Cas2 may allosterically regulate non-PAMc association or even cleavage at the other site, and such regulation can be mediated by noncatalytic Cas2 and DNA protospacer to possibly support the ensued psDNA acquisition.


Assuntos
Proteínas Associadas a CRISPR , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Regulação Alostérica , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , DNA/genética , Escherichia coli/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 41(6): e284-e298, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33441025
6.
Comput Struct Biotechnol J ; 17: 638-644, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31193497

RESUMO

RNA polymerase (RNAP) from bacteriophage T7 is a representative single-subunit viral RNAP that can transcribe with high promoter activities without assistances from transcription factors. We accordingly studied this small transcription machine computationally as a model system to understand underlying mechanisms of mechano-chemical coupling and fidelity control in the RNAP transcription elongation. Here we summarize our computational work from several recent publications to demonstrate first how T7 RNAP translocates via Brownian alike motions along DNA right after the catalytic product release. Then we show how the backward translocation motions are prevented at post-translocation upon successful nucleotide incorporation, which is also subject to stepwise nucleotide selection and acts as a pawl for "selective ratcheting". The structural dynamics and energetics features revealed from our atomistic molecular dynamics (MD) simulations and related analyses on the single-subunit T7 RNAP thus provided detailed and quantitative characterizations on the Brownian-ratchet working scenario of a prototypical transcription machine with sophisticated nucleotide selectivity for fidelity control. The presented mechanisms can be more or less general for structurally similar viral or mitochondrial RNAPs and some of DNA polymerases, or even for the RNAP engine of the more complicated transcription machinery in higher organisms.

7.
Nucleic Acids Res ; 47(9): 4721-4735, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30916310

RESUMO

An elongation cycle of a transcribing RNA polymerase (RNAP) usually consists of multiple kinetics steps, so there exist multiple kinetic checkpoints where non-cognate nucleotides can be selected against. We conducted comprehensive free energy calculations on various nucleotide insertions for viral T7 RNAP employing all-atom molecular dynamics simulations. By comparing insertion free energy profiles between the non-cognate nucleotide species (rGTP and dATP) and a cognate one (rATP), we obtained selection free energetics from the nucleotide pre-insertion to the insertion checkpoints, and further inferred the selection energetics down to the catalytic stage. We find that the insertion of base mismatch rGTP proceeds mainly through an off-path along which both pre-insertion screening and insertion inhibition play significant roles. In comparison, the selection against dATP is found to go through an off-path pre-insertion screening along with an on-path insertion inhibition. Interestingly, we notice that two magnesium ions switch roles of leave and stay during the dATP on-path insertion. Finally, we infer that substantial selection energetic is still required to catalytically inhibit the mismatched rGTP to achieve an elongation error rate ∼10-4 or lower; while no catalytic selection seems to be further needed against dATP to obtain an error rate ∼10-2.


Assuntos
Bacteriófago T7/genética , RNA Polimerases Dirigidas por DNA/genética , Transcrição Gênica , Proteínas Virais/genética , Replicação Viral/genética , Trifosfato de Adenosina/genética , Bacteriófago T7/enzimologia , Guanosina Trifosfato/genética , Cinética , Simulação de Dinâmica Molecular , Nucleotídeos/genética , Especificidade por Substrato
8.
J Mol Biol ; 430(24): 5080-5093, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30365951

RESUMO

3'3'-cyclic GMP-AMP (3'3'-cGAMP) belongs to a family of the bacterial secondary messenger cyclic dinucleotides. It was first discovered in the Vibrio cholerae seventh pandemic strains and is involved in efficient intestinal colonization and chemotaxis regulation. Phosphodiesterases (PDEs) that degrade 3'3'-cGAMP play important regulatory roles in the relevant signaling pathways, and a previous study has identified three PDEs in V. cholerae, namely, V-cGAP1, V-cGAP2, and V-cGAP3, functioning in 3'3'-cGAMP degradation. We report the crystal structure, biochemical, and structural analyses of V-cGAP3, providing a foundation for understanding the mechanism of 3'3'-cGAMP degradation and regulation in general. Our crystal and molecular dynamic (MD)-simulated structures revealed that V-cGAP3 contains tandem HD-GYP domains within its N- and C-terminal domains, with similar three-dimensional topologies despite their low-sequence identity. Biochemical and structural analyses showed that the N-terminal domain plays a mechanism of positive regulation for the catalytic C-terminal domain. We also demonstrated that the other homologous Vibrio PDEs, V-cGAP1/2, likely function via a similar mechanism.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Nucleotídeos Cíclicos/metabolismo , Vibrio cholerae/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Simulação de Dinâmica Molecular , Domínios Proteicos , Sistemas do Segundo Mensageiro , Vibrio cholerae/química
9.
Nucleic Acids Res ; 45(13): 7909-7921, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28575393

RESUMO

Here, we studied the complete process of a viral T7 RNA polymerase (RNAP) translocation on DNA during transcription elongation by implementing extensive all-atom molecular dynamics (MD) simulations to construct a Markov state model (MSM). Our studies show that translocation proceeds in a Brownian motion, and the RNAP thermally transits among multiple metastable states. We observed non-synchronized backbone movements of the nucleic acid (NA) chains with the RNA translocation accomplished first, while the template DNA lagged. Notably, both the O-helix and Y-helix on the fingers domain play key roles in facilitating NA translocation through the helix opening. The helix opening allows a key residue Tyr639 to become inserted into the active site, which pushes the RNA-DNA hybrid forward. Another key residue, Phe644, coordinates the downstream template DNA motions by stacking and un-stacking with a transition nucleotide (TN) and its adjacent nucleotide. Moreover, the O-helix opening at pre-translocation (pre-trans) likely resists backtracking. To test this hypothesis, we computationally designed mutants of T7 RNAP by replacing the amino acids on the O-helix with counterpart residues from a mitochondrial RNAP that is capable of backtracking. The current experimental results support the hypothesis.


Assuntos
RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Substituição de Aminoácidos , Bacteriófago T7/enzimologia , Bacteriófago T7/genética , Domínio Catalítico/genética , RNA Polimerases Dirigidas por DNA/genética , Cadeias de Markov , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica em alfa-Hélice , Domínios Proteicos , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Elongação da Transcrição Genética , Proteínas Virais/genética
10.
J Phys Chem B ; 121(15): 3777-3786, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28199109

RESUMO

Nucleotide selection is crucial for transcription fidelity control, in particular, for viral T7 RNA polymerase (RNAP) lack of proofreading activity. It has been recognized that multiple kinetic checkpoints exist prior to full nucleotide incorporation. In this work, we implemented intensive atomistic molecular dynamics (MD) simulations to quantify how strong the nucleotide selection is at the initial checkpoint of an elongation cycle of T7 RNAP. The incoming nucleotides bind into a preinsertion site where a critical tyrosine residue locates nearby to assist the nucleotide selection. We calculated the relative binding free energy between a noncognate nucleotide and a cognate one at a preinsertion configuration via alchemical simulations, showing that a small selection free energy or the binding free energy difference (∼3 kBT) exists between the two nucleotides. Indeed, another preinsertion configuration favored by the noncognate nucleotides was identified, which appears to be off path for further nucleotide insertion and additionally assists the nucleotide selection. By chemical master equation (CME) approach, we show that the small selection free energy at the preinsertion site along with the off-path noncognate nucleotide filtering can help substantially to reduce the error rate and to maintain the elongation rate high in the T7 RNAP transcription.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Simulação de Dinâmica Molecular , Nucleotídeos/metabolismo , Elongação da Transcrição Genética , Proteínas Virais/metabolismo , Nucleotídeos/química , Termodinâmica
11.
PLoS Comput Biol ; 11(11): e1004624, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26599007

RESUMO

Pyrophosphate ion (PPi) release during transcription elongation is a signature step in each nucleotide addition cycle. The kinetics and energetics of the process as well as how it proceeds with substantial conformational changes of the polymerase complex determine the mechano-chemical coupling mechanism of the transcription elongation. Here we investigated detailed dynamics of the PPi release process in a single-subunit RNA polymerase (RNAP) from bacteriophage T7, implementing all-atom molecular dynamics (MD) simulations. We obtained a jump-from-cavity kinetic model of the PPi release utilizing extensive nanosecond MD simulations. We found that the PPi release in T7 RNAP is initiated by the PPi dissociation from two catalytic aspartic acids, followed by a comparatively slow jump-from-cavity activation process. Combining with a number of microsecond long MD simulations, we also found that the activation process is hindered by charged residue associations as well as by local steric and hydrogen bond interactions. On the other hand, the activation is greatly assisted by a highly flexible lysine residue Lys472 that swings its side chain to pull PPi out. The mechanism can apply in general to single subunit RNA and DNA polymerases with similar molecular structures and conserved key residues. Remarkably, the flexible lysine or arginine residue appears to be a universal module that assists the PPi release even in multi-subunit RNAPs with charge facilitated hopping mechanisms. We also noticed that the PPi release is not tightly coupled to opening motions of an O-helix on the fingers domain of T7 RNAP according to the microsecond MD simulations. Our study thus supports the Brownian ratchet scenario of the mechano-chemical coupling in the transcription elongation of the single-subunit polymerase.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Difosfatos/metabolismo , Lisina/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Biologia Computacional , RNA Polimerases Dirigidas por DNA/química , Difosfatos/química , Lisina/química , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Alinhamento de Sequência , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...