Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 15832, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138091

RESUMO

Co-contamination by organic solvents (e.g., toluene and tetrahydrofuran) and metal ions (e.g., Cu2+) is common in industrial wastewater and in industrial sites. This manuscript describes the separation of THF from water in the absence of copper ions, as well as the treatment of water co-polluted with either THF and copper, or toluene and copper. Tetrahydrofuran (THF) and water are freely miscible in the absence of lauric acid. Lauric acid separates the two solvents, as demonstrated by proton nuclear magnetic resonance (1H NMR) and Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR). The purity of the water phase separated from 3:7 (v/v) THF:water mixtures using 1 M lauric acid is ≈87%v/v. Synchrotron small angle X-Ray scattering (SAXS) indicates that lauric acid forms reverse micelles in THF, which swell in the presence of water (to host water in their interior) and ultimately lead to two free phases: 1) THF-rich and 2) water-rich. Deprotonated lauric acid (laurate ions) also induces the migration of Cu2+ ions in either THF (following separation from water) or in toluene (immiscible in water), enabling their removal from water. Laurate ions and copper ions likely interact through physical interactions (e.g., electrostatic interactions) rather than chemical bonds, as shown by ATR-FTIR. Inductively coupled plasma-optical emission spectrometry (ICP-OES) demonstrates up to 60% removal of Cu2+ ions from water co-polluted by CuSO4 or CuCl2 and toluene. While lauric acid emulsifies water and toluene in the absence of copper ions, copper salts destabilize emulsions. This is beneficial, to avoid that copper ions are re-entrained in the water phase alongside with toluene, following their migration in the toluene phase. The effect of copper ions on emulsion stability is explained based on the decreased interfacial activity and compressional rigidity of interfacial films, probed using a Langmuir trough. In wastewater treatment, lauric acid (a powder) can be mixed directly in the polluted water. In the context of groundwater remediation, lauric acid can be solubilized in canola oil to enable its injection to treat aquifers co-polluted by organic solvents and Cu2+. In this application, injectable filters obtained by injecting cationic hydroxyethylcellulose (HEC +) would impede the flow of toluene and copper ions partitioned in it, protecting downstream receptors. Co-contaminants can be subsequently extracted upstream of the filters (using pumping wells), to enable their simultaneous removal from aquifers.


Assuntos
Cobre , Poluentes Químicos da Água , Cobre/química , Descontaminação , Emulsões , Furanos , Íons/análise , Lauratos , Ácidos Láuricos , Micelas , Pós , Prótons , Óleo de Brassica napus , Sais , Espalhamento a Baixo Ângulo , Solventes , Tolueno/análise , Águas Residuárias/análise , Água/análise , Poluentes Químicos da Água/análise , Difração de Raios X
2.
Langmuir ; 37(37): 11153-11169, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34514802

RESUMO

Nonaqueous phase liquids (NAPL, e.g., hydrocarbons and chlorinated compounds) are common groundwater pollutants. Electrokinetic remediation of NAPLs uses electric fields to draw them toward electrodes and remove them from groundwater. The treatment requires NAPL mobility. Emulsification increases mobility, but at a risk for downstream receptors. We propose using alkaline aqueous solutions of zein and graphene nanoparticles (GNP) to form conductive materials, which could also act as barriers to control NAPL migration. Alkaline zein-GNP solutions can be injected in the polluted soil and solidified by neutralizing the pH (e.g., with glacial acetic acid, GAA). Shear rheology experiments showed that zein-GNP composites were cohesive, and voltammetry showed that GNP increased electrical conductivity of zein-based materials by 3.5 times. Gas chromatography-mass spectroscopy (GC-MS) demonstrated that the electrokinetic treatment of model sandy aquifers yielded >60% and ∼47% removal of emulsified toluene in freshwater and in salt solutions, respectively (with 30 min treatment using a 10 V differential voltage between a zein-GNP and an aluminum electrode. NaCl was used as model salt contaminant. The conductivity of surfactant solutions was lower in saline water than in freshwater, explaining differences in toluene removal. Toluene-water emulsions were stabilized using the natural surfactants lecithin and saponin. These surfactants acted synergistically in stabilizing emulsions in either freshwater or salt solutions. Lecithin and saponin likely interacted at toluene-water interfaces, as indicated by the morphology, interfacial tension and compressional rigidity of toluene-water interfaces with both components (relative to interfaces of either lecithin or saponin alone). The compressional behavior of interfacial films was well-described by the Marczak model. Electrokinetic treatment of saturated model sandy aquifers also decreased the turbidity of emulsions of water and either tricholoroethylene (TCE, by ∼41%) or diesel (by ∼75%), in the presence of a bacterial biosurfactant. This decrease was used as semiquantitative indicator of NAPL removal from water.


Assuntos
Grafite , Poluentes Químicos da Água , Zeína , Hidrocarbonetos , Tensoativos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...