Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 17(9): 2608-13, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17331716

RESUMO

Cholesteryl ester transfer protein is a plasma glycoprotein that transfers cholesterol ester between lipoprotein particles. Inhibition of this protein, in vitro and in vivo, produces an increase in plasma high density lipoprotein cholesterol (HDL-C). This communication will describe the SAR and synthesis of a series of substituted tetrahydroquinoxaline CETP inhibitors from early mu lead to advanced enantiomerically pure analogs.


Assuntos
Química Farmacêutica/métodos , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Ésteres/química , Quinoxalinas/síntese química , Quinoxalinas/farmacologia , Tetrazóis/química , Animais , HDL-Colesterol/metabolismo , Desenho de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Conformação Molecular , Ratos , Estereoisomerismo , Relação Estrutura-Atividade
2.
Bioorg Med Chem Lett ; 14(22): 5537-42, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15482919

RESUMO

A series of racemic and chiral, nonracemic lactams that display high binding affinities, functional chemotaxis antagonism, and selectivity toward CCR4 are described. Compound 41, which provides reasonably high blood levels in mice when dosed intraperitoneally, was identified as a useful pharmacological tool to explore the role of CCR4 antagonism in animal models of allergic disease.


Assuntos
Lactamas/química , Lactamas/farmacocinética , Receptores de Quimiocinas/antagonistas & inibidores , Animais , Sítios de Ligação , Ligação Competitiva/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Hipersensibilidade/tratamento farmacológico , Lactamas/síntese química , Camundongos , Estrutura Molecular , Receptores CCR4 , Estereoisomerismo , Relação Estrutura-Atividade
3.
J Am Chem Soc ; 125(15): 4541-50, 2003 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-12683825

RESUMO

A concise synthesis of (+)-geissoschizine (1), a biosynthetic precursor of a variety of monoterpenoid indole alkaloids, from d-tryptophan (19) was performed as a critical prelude to achieving the first biomimetic, enantioselective synthesis of the sarpagine alkaloid (+)-N(a)-methylvellosimine (5). The approach to (+)-geissoschizine was designed to address the dual problems of stereocontrolled formation of the E-ethylidene moiety and the correct relative configuration at C(3) and C(15). Key steps in the synthesis involve a vinylogous Mannich reaction to prepare the carboline 22, which has the absolute stereochemistry at C(3) corresponding to that in 1 and 5, and an intramolecular Michael addition that leads to the tetracyclic corynantheane derivative 24, which possesses the correct stereochemical relationship between C(3) and C(15). Compound 24 was then transformed into 27, the pivotal intermediate in the syntheses of 1 and 5, by a sequence that allowed the stereospecific introduction of the E-ethylidene moiety. Selective reduction of the lactam in 27 followed by removal of the C(5) carboxyl group by radical decarbonylation gave deformylgeissoschizine (2) that was converted into (+)-geissoschizine (1) by formylation. The common intermediate 27 was then converted via a straightforward sequence of reactions into the alpha-amino nitrile 39. The derived silyl enol ether 40 underwent ionization upon exposure to BF(3).OEt(2) to give the intermediate iminium ion 41 that then cyclized in a biomimetically inspired intramolecular Mannich reaction to deliver (+)-N(a)-methylvellosimine (5). This transformation provides experimental support for the involvement of such a cyclization as one of the key steps in the biosynthesis of the sarpagine and ajmaline alkaloids.


Assuntos
Materiais Biomiméticos/síntese química , Carbolinas/síntese química , Alcaloides Indólicos/química , Alcaloides Indólicos/síntese química , Estereoisomerismo
4.
Mol Cancer Ther ; 2(12): 1257-64, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14707266

RESUMO

Cancer presents a difficult challenge for oncologists, as there are few therapies that specifically target disease cells. Existing treatment strategies rely heavily on physical and chemical agents that nonspecifically affect DNA metabolism. To improve the effectiveness of these treatments, we have identified a new class of protein kinase inhibitor that targets a major DNA repair pathway. A representative of this class, 1-(2-hydroxy-4-morpholin-4-yl-phenyl)-ethanone, inhibits the DNA-dependent protein kinase (DNA-PK) and differs significantly from previously studied DNA-PK inhibitors both structurally and functionally. DNA-PK participates in the cellular response to and repair of chromosomal DNA double-strand breaks (DSBs). These new selective inhibitors recapitulate the phenotype of DNA-PK defective cell lines including those from SCID mice. These compounds directly inhibit the repair of DNA DSBs and consequently enhance the cytotoxicity of physical and chemical agents that induce DSBs but not other DNA lesions. In contrast to previously studied DNA-PK inhibitors, these compounds appear benign, exhibiting no toxic effects in the absence of DSB-inducing treatments. Most importantly, 1-(2-hydroxy-4-morpholin-4-yl-phenyl)-ethanone synergistically enhances radiation-induced tumor control in a mouse-human xenograft assay. These studies validate DNA-PK as a cancer drug target and suggest a new approach for enhancing the effects of existing cancer therapies.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ligação a DNA , Inibidores Enzimáticos/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Dano ao DNA , Proteína Quinase Ativada por DNA , Inibidores Enzimáticos/uso terapêutico , Células HeLa , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Proteínas Nucleares , Fenótipo
5.
J Org Chem ; 64(6): 1789-1797, 1999 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-11674266

RESUMO

The sequential application of singlet oxygenation and peroxyl radical rearrangement provides an asymmetric entry to 4-peroxy-2-enols and 4-peroxy-2-enones. Enantiomerically enriched 2-hydroperoxy-3-alkenols, obtained via hydroxyl-directed addition of (1)O(2) to Z-allylic alcohols, undergo stereospecific radical rearrangement to form 4-hydroperoxy-2-alkenols. The yields of the rearrangement are improved in the presence of excess tert-butyl hydroperoxide, which limits dimerization of the substrate peroxyl radicals. However, the rearrangement equilibrium is unaffected by the presence of polar co-solvents or by the incorporation of a group able to selectively hydrogen bond to the product hydroperoxide. Photoisomerization of the (E)-4-hydroperoxy-2-enone rearrangement products results in irreversible ring closure to furnish diastereomeric mixtures of enantiomerically enriched dioxinols. The strategy is applied to the total synthesis of the alkoxydioxine natural products chondrillin and plakorin. Comparison of the optical rotation of the synthetic material against literature reports indicates that the natural products are either enantiomerically pure or highly enriched in one enantiomer. In addition, our results conclusively demonstrate that the reported configuration of chondrillin is in error.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...