Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L647-L661, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37786945

RESUMO

Alcohol use disorder (AUD) is a significant public health concern and people with AUD are more likely to develop severe acute respiratory distress syndrome (ARDS) in response to respiratory infections. To examine whether AUD was a risk factor for more severe outcome in response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we examined early responses to infection using cultured differentiated bronchial epithelial cells derived from brushings obtained from people with AUD or without AUD. RNA-seq analysis of uninfected cells determined that AUD cells were enriched for expression of epidermal genes as compared with non-AUD cells. Bronchial epithelial cells from patients with AUD showed a significant decrease in barrier function 72 h postinfection, as determined by transepithelial electrical resistance. In contrast, barrier function of non-AUD cells was enhanced 72 h after SARS-CoV-2 infection. AUD cells showed claudin-7 that did not colocalize with zonula occludens-1 (ZO-1), indicative of disorganized tight junctions. However, both AUD and non-AUD cells showed decreased ß-catenin expression following SARS-CoV-2 infection. To determine the impact of AUD on the inflammatory response to SARS-CoV-2 infection, cytokine secretion was measured by multiplex analysis. SARS-CoV-2-infected AUD bronchial cells had enhanced secretion of multiple proinflammatory cytokines including TNFα, IL-1ß, and IFNγ as opposed to non-AUD cells. In contrast, secretion of the barrier-protective cytokines epidermal growth factor (EGF) and granulocyte macrophage-colony stimulating factor (GM-CSF) was enhanced for non-AUD bronchial cells. Taken together, these data support the hypothesis that AUD is a risk factor for COVID-19, where alcohol primes airway epithelial cells for increased inflammation and increased barrier dysfunction and increased inflammation in response to infection by SARS-CoV-2.NEW & NOTEWORTHY Alcohol use disorder (AUD) is a significant risk factor for severe acute respiratory distress syndrome. We found that AUD causes a phenotypic shift in gene expression in human bronchial epithelial cells, enhancing expression of epidermal genes. AUD cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had higher levels of proinflammatory cytokine secretion and barrier dysfunction not present in infected non-AUD cells, consistent with increased early COVID-19 severity due to AUD.


Assuntos
Alcoolismo , COVID-19 , Síndrome do Desconforto Respiratório , Humanos , SARS-CoV-2/metabolismo , Citocinas/metabolismo , Inflamação
2.
Am J Respir Cell Mol Biol ; 68(2): 150-160, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36178467

RESUMO

RIPK3 (receptor-interacting protein kinase 3) activity triggers cell death via necroptosis, whereas scaffold function supports protein binding and cytokine production. To determine if RIPK3 kinase or scaffold domains mediate pathology during Pseudomonas aeruginosa infection, control mice and those with deletion or mutation of RIPK3 and associated signaling partners were subjected to Pseudomonas pneumonia and followed for survival or killed for biologic assays. Murine immune cells were studied in vitro for Pseudomonas-induced cytokine production and cell death, and RIPK3 binding interactions were blocked with the viral inhibitor M45. Human tissue effects were assayed by infecting airway epithelial cells with Pseudomonas and measuring cytokine production after siRNA inhibition of RIPK3. Deletion of RIPK3 reduced inflammation and decreased animal mortality after Pseudomonas pneumonia. RIPK3 kinase inactivation did neither. In cell culture, RIPK3 was dispensable for cell killing by Pseudomonas and instead drove cytokine production that required the RIPK3 scaffold domain but not kinase activity. Blocking the RIP homotypic interaction motif (RHIM) with M45 reduced the inflammatory response to infection in vitro. Similarly, siRNA knockdown of RIPK3 decreased infection-triggered inflammation in human airway epithelial cells. Thus, the RIPK3 scaffold drives deleterious pulmonary inflammation and mortality in a relevant clinical model of Pseudomonas pneumonia. This process is distinct from kinase-mediated necroptosis, requiring only the RIPK3 RHIM. Inhibition of RHIM signaling is a potential strategy to reduce lung inflammation during infection.


Assuntos
Pneumonia , Pseudomonas aeruginosa , Animais , Humanos , Camundongos , Pseudomonas aeruginosa/metabolismo , Apoptose , Inflamação/metabolismo , RNA Interferente Pequeno , Citocinas/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
3.
Sci Rep ; 12(1): 1540, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087167

RESUMO

Primary cells isolated from the human respiratory tract are the state-of-the-art for in vitro airway epithelial cell research. Airway cell isolates require media that support expansion of cells in a basal state to maintain the capacity for differentiation as well as proper cellular function. By contrast, airway cell differentiation at an air-liquid interface (ALI) requires a distinct medium formulation that typically contains high levels of glucose. Here, we expanded and differentiated human basal cells isolated from the nasal and conducting airway to a mature mucociliary epithelial cell layer at ALI using a medium formulation containing normal resting glucose levels. Of note, bronchial epithelial cells expanded and differentiated in normal resting glucose medium showed insulin-stimulated glucose uptake which was inhibited by high glucose concentrations. Normal glucose containing ALI also enabled differentiation of nasal and tracheal cells that showed comparable electrophysiological profiles when assessed for cystic fibrosis transmembrane conductance regulator (CFTR) function and that remained responsive for up to 7 weeks in culture. These data demonstrate that normal glucose containing medium supports differentiation of primary nasal and lung epithelial cells at ALI, is well suited for metabolic studies, and avoids pitfalls associated with exposure to high glucose.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística
4.
Tissue Barriers ; 9(3): 1929786, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34107845

RESUMO

Tight junctions between lung alveolar epithelial cells maintain an air-liquid barrier necessary for healthy lung function. Previously, we found that rearrangement of tight junctions from a linear, cortical orientation into perpendicular protrusions (tight junction spikes) is associated with a decrease in alveolar barrier function, especially in alcoholic lung syndrome. Using quantitative super-resolution microscopy, we found that spikes in control cells were enriched for claudin-18 as compared with alcohol-exposed cells. Moreover, using an in situ method to measure barrier function, tight junction spikes were not associated with localized increases in permeability. This suggests that tight junction spikes have a regulatory role as opposed to causing a physical weakening of the epithelial barrier. We found that tight junction spikes form at cell-cell junctions oriented away from pools of ß-catenin associated with actin filaments, suggesting that adherens junctions determine the directionality of tight junction spikes. Dynamin-2 was associated with junctional claudin-18 and ZO-1, but showed little localization with ß-catenin and tight junction spikes. Treatment with Dynasore decreased the number of tight junction spikes/cell, increased tight junction spike length, and stimulated actin to redistribute to cortical tight junctions. By contrast, Dynole 34-2 and MiTMAB altered ß-catenin localization, and reduced tight junction spike length. These data suggest a novel role for dynamin-2 in tight junction spike formation by reorienting junction-associated actin. Moreover, the greater spatial separation of adherens and tight junctions in squamous alveolar epithelial cells as compared with columnar epithelial cells facilitates analysis of molecular regulation of the apical junctional complex.


Assuntos
Dinamina II , Junções Íntimas , beta Catenina , Junções Aderentes , Células Epiteliais Alveolares , Animais , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...