Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 13(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36005310

RESUMO

The gut microbiomes of symbiotic insects typically mediate essential functions lacking in their hosts. Here, we describe the composition of microbes residing in the alimentary canal of the hairy fungus beetle, Typhaea stercorea (L.), at various life stages. This beetle is a post-harvest pest of stored grains that feeds on fungi and serves as a vector of mycotoxigenic fungi. It has been reported that the bacterial communities found in most insects' alimentary canals contribute to nutrition, immune defenses, and protection from pathogens. Hence, bacterial symbionts may play a key role in the digestive system of T. stercorea. Using 16S rRNA amplicon sequencing, we examined the microbiota of T. stercorea. We found no difference in bacterial species richness between larvae and adults, but there were compositional differences across life stages (PERMANOVA:pseudo-F(8,2) = 8.22; p = 0.026). The three most abundant bacteria found in the alimentary canal of the larvae and adults included Pseudomonas (47.67% and 0.21%, respectively), an unspecified genus of the Enterobacteriaceae family (46.60 % and 90.97%, respectively), and Enterobacter (3.89% and 5.75%, respectively). Furthermore, Pseudomonas spp. are the predominant bacteria in the larval stage. Our data indicated that field-collected T. stercorea tended to have lower species richness than laboratory-reared beetles (Shannon: H = 5.72; p = 0.057). Furthermore, the microbial communities of laboratory-reared insects resembled one another, whereas field-collected adults exhibited variability (PERMANOVA:pseudo-F(10,3) = 4.41; p = 0.006). We provide evidence that the environment and physiology can shift the microbial composition in the alimentary canal of T. stercorea.

2.
J Insect Sci ; 20(5)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33119749

RESUMO

Every year, the Student Debates Subcommittee (SDS) of the Student Affairs Committee (SAC) for the annual Entomological Society of America (ESA) meeting organizes the Student Debates. This year, the SAC selected topics based on their synergistic effect or ability to ignite exponential positive change when addressed as a whole. For the 2019 Student Debates, the SAC SDS identified these topic areas for teams to debate and unbiased introduction speakers to address: 1) how to better communicate science to engage the public, particularly in the area of integrated pest management (IPM), 2) the influential impacts of climate change on agriculturally and medically relevant insect pests, and 3) sustainable agriculture techniques that promote the use of IPM to promote food security. Three unbiased introduction speakers gave a foundation for our audience to understand each debate topic, while each of six debate teams provided a strong case to support their stance or perspective on a topic. Debate teams submitted for a competitive spot for the annual ESA Student Debates and trained for the better part of a year to showcase their talents in presenting logical arguments for a particular topic. Both the debate teams and unbiased introduction speakers provided their insight toward a better understanding of the complexities of each topic and established a foundation to delve further into the topics of science advocacy and communication, climate change, and the many facets of integrated pest management.


Assuntos
Mudança Climática , Disseminação de Informação , Controle de Pragas , Comunicação
3.
J Econ Entomol ; 109(2): 832-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26709293

RESUMO

The development of insecticide resistance in Asian citrus psyllid, Diaphorina citri Kuwayama, populations is a serious threat to the citrus industry. As a contribution to a resistance management strategy, we developed a glass vial technique to monitor field populations of Asian citrus psyllid for insecticide resistance. Diagnostic concentrations needed to separate susceptible genotypes from resistant individuals were determined for cypermethrin (0.5 µg per vial), malathion (1.0 µg per vial), diazinon (1.0 µg per vial), carbaryl (1.0 µg per vial), carbofuran (0.1 µg per vial), methomyl (1.0 µg per vial), propoxur (1.0 µg per vial), endosulfan (1.0 µg per vial), imidacloprid (0.5 µg per vial), acetamiprid (5.0 µg per vial), chlorfenapyr (2.5 µg per vial), and fenpyroximate (2.5 µg per vial). In 2014, resistance to two carbamate insecticides (carbaryl and carbofuran), one organophosphate (malathion), one pyrethroid (cypermethrin), and one pyrazole (fenpyroximate) was detected in field populations of Asian citrus psyllid in Immokalee, FL. There was no resistance detected to diazinon, methomyl, propoxur, endosulfan, imidacloprid, and chlorfenapyr. The levels of insecticide resistance were variable and unstable, suggesting that resistance could be successfully managed. The results validate the use of the glass vial bioassay to monitor for resistance in Asian citrus psyllid populations and provide the basis for the development of a resistance management strategy designed to extend the efficacy of all classes of insecticides used for control of the Asian citrus psyllid.


Assuntos
Hemípteros , Resistência a Inseticidas , Inseticidas , Animais , Florida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...