Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Investig ; 10: 2, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742283

RESUMO

Background: Our earlier work has shown that a unique stem cell-based vaccine that comprises of murine embryonic stem cells (ESCs) and murine fibroblasts expressing the immunostimulant granulocyte-macrophage colony stimulating factor (GM-CSF) successfully protects mice from the outgrowth of an implantable form of murine lung cancer. The use of live ESCs raises the potential risks of inducing teratomas and autoimmunity. We have attempted to improve the safety and utility of this prophylactic vaccine by employing exosomes derived from murine ESCs engineered to produce GM-CSF (ES-exo/GM-CSF vaccine). Methods: We have previously reported that ES-exo/GM-CSF immunization does protect mice from the outgrowth of an implantable form of murine lung cancer. Here, we have investigated the cancer prevention efficacy of ES-exo/GM-CSF vaccine in an experimental metastasis model of murine lung cancer, in which Lewis lung carcinoma (LLC) cells were administered into female C57BL/6 mice (8 weeks of age) through tail vein injection and subsequently LLC tumors were established in lungs. Results: Our objective is to test the anti-cancer efficacy of ES-exo/GM-CSF vaccine in a mouse model of metastatic lung cancer. Our studies indicate that vaccination of mice with ES-exo/GM-CSF vaccine inhibited the growth of metastatic lung tumors. ES-exo/GM-CSF vactionation reduced lung tumor burden from 1.86% in non-vaccinated, LLC-challenged mice to 0.036% in corresponding vacinnated mice. Importantly, control exosomes without GM-CSF failed to provide protection against metastasized pulmonary tumors. The efficacy of ES-exo/GM-CSF vaccination was associated with a decrease in the frequencies of tumor-infiltrating immunosuppressive immune cells, including T regulatory cells, myeloid derived suppressor cells (MDSCs) and tumor-associated macrophages, as well as an increase in effector cytokine production from intra-tumoral CD8+ T cells. Conclusions: Overall, our research provides a novel strategy for developing a cell-free prophylactic vaccine against lung tumors.

2.
J Vis Exp ; (177)2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34842232

RESUMO

Embryonic stem cells (ESCs) are pluripotent stem cells capable of self-renewal and differentiation into all types of embryonic cells. Like many other cell types, ESCs release small membrane vesicles, such as exosomes, to the extracellular environment. Exosomes serve as essential mediators of intercellular communication and play a basic role in many (patho)physiological processes. Granulocyte-macrophage colony-stimulating factor (GM-CSF) functions as a cytokine to modulate the immune response. The presence of GM-CSF in exosomes has the potential to boost their immune-regulatory function. Here, GM-CSF was stably overexpressed in the murine ESC cell line ES-D3. A protocol was developed to isolate high-quality exosome-enriched extracellular vesicles (EVs) from ES-D3 cells overexpressing GM-CSF. Isolated exosome-enriched EVs were characterized by a variety of experimental approaches. Importantly, significant amounts of GM-CSF were found to be present in exosome-enriched EVs. Overall, GM-CSF-bearing exosome-enriched EVs from ESCs might function as cell-free vesicles to exert their immune-regulatory activities.


Assuntos
Exossomos , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Animais , Diferenciação Celular , Citocinas/metabolismo , Células-Tronco Embrionárias/metabolismo , Exossomos/metabolismo , Camundongos
3.
Vaccines (Basel) ; 9(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207062

RESUMO

The advent of cancer immunotherapy has revolutionized the field of cancer treatment and offers cancer patients new hope. Although this therapy has proved highly successful for some patients, its efficacy is not all encompassing and several cancer types do not respond. Cancer vaccines offer an alternate approach to promote anti-tumor immunity that differ in their mode of action from antibody-based therapies. Cancer vaccines serve to balance the equilibrium of the crosstalk between the tumor cells and the host immune system. Recent advances in understanding the nature of tumor-mediated tolerogenicity and antigen presentation has aided in the identification of tumor antigens that have the potential to enhance anti-tumor immunity. Cancer vaccines can either be prophylactic (preventative) or therapeutic (curative). An exciting option for therapeutic vaccines is the emergence of personalized vaccines, which are tailor-made and specific for tumor type and individual patient. This review summarizes the current standing of the most promising vaccine strategies with respect to their development and clinical efficacy. We also discuss prospects for future development of stem cell-based prophylactic vaccines.

4.
Sci Rep ; 11(1): 10435, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001932

RESUMO

Hemorrhage and hemolysis with subsequent heme release are implicated in many pathologies. Endothelial cells (ECs) encounter large amount of free heme after hemolysis and are at risk of damage from exogenous heme. Here we show that hemorrhage aggravates endoplasmic reticulum (ER) stress in human carotid artery plaques compared to healthy controls or atheromas without hemorrhage as demonstrated by RNA sequencing and immunohistochemistry. In EC cultures, heme also induces ER stress. In contrast, if cultured ECs are pulsed with heme arginate, cells become resistant to heme-induced ER (HIER) stress that is associated with heme oxygenase-1 (HO-1) and ferritin induction. Knocking down HO-1, HO-2, biliverdin reductase, and ferritin show that HO-1 is the ultimate cytoprotectant in acute HIER stress. Carbon monoxide-releasing molecules (CORMs) but not bilirubin protects cultured ECs from HIER stress via HO-1 induction, at least in part. Knocking down HO-1 aggravates heme-induced cell death that cannot be counterbalanced with any known cell death inhibitors. We conclude that endothelium and perhaps other cell types can be protected from HIER stress by induction of HO-1, and heme-induced cell death occurs via HIER stress that is potentially involved in the pathogenesis of diverse pathologies with hemolysis and hemorrhage including atherosclerosis.


Assuntos
Estenose das Carótidas/complicações , Heme Oxigenase-1/metabolismo , Heme/metabolismo , Hemorragia/patologia , Placa Aterosclerótica/complicações , Biópsia , Estenose das Carótidas/sangue , Linhagem Celular , Estresse do Retículo Endoplasmático , Células Endoteliais/patologia , Endotélio Vascular/citologia , Endotélio Vascular/patologia , Técnicas de Silenciamento de Genes , Voluntários Saudáveis , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/genética , Hemólise , Hemorragia/etiologia , Humanos , Placa Aterosclerótica/sangue
5.
Data Brief ; 27: 104624, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31692674

RESUMO

Exposure to ionizing radiation associated with highly energetic and charged heavy particles is an inherent risk astronauts face in long duration space missions. We have previously considered the transcriptional effects that three levels of radiation (0.3 Gy, 1.5 Gy, and 3.0 Gy) have at an immediate time point (1 hr) post-exposure [1]. Our analysis of these results suggest effects on transcript levels that could be modulated at lower radiation doses [2]. In addition, a time dependent effect is likely to be present. Therefore, in order to develop a lab-on-a-chip approach for detection of radiation exposure in terms of both radiation level and time since exposure, we developed a time- and dose-course study to determine appropriate sensitive and specific transcript biomarkers that are detectable in blood samples. The data described herein was developed from a study measuring exposure to 0.15 Gy, 0.30 Gy, and 1.5 Gy of radiation at 1 hr, 2 hr, and 6 hr post-exposure using Affymetrix® GeneChip® PrimeView™ microarrays. This report includes raw gene expression data files from the resulting microarray experiments representing typical radiation exposure levels an astronaut may experience as part of a long duration space mission. The data described here is available in NCBI's Gene Expression Omnibus (GEO), accession GSE63952.

6.
Oncoimmunology ; 8(3): 1561119, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30723593

RESUMO

The antigenic similarity between embryos and tumors has raised the idea of using embryonic material as a preventative vaccine against neoplastic disease. Indeed, we have previously reported that a vaccine comprises allogeneic murine embryonic stem cells (ESCs) and murine fibroblasts expressing GM-CSF (to amplify immune responses) successfully blocks the outgrowth of an implantable cancer (Lewis lung carcinoma; LLC) and lung tumors generated in mice using a combination of a mutagen followed by chronic pulmonary inflammation. However, such a vaccine is obviously impractical for application to humans. The use of fibroblasts to generate GM-CSF is needlessly complicated, and intact whole ESCs carry the hazard of generating embryomas/teratomas. Here, we report the successful application of an alternative prophylactic vaccine comprises exosomes derived from murine ESCs engineered to produce GM-CSF. Vaccination of mice with these exosomes significantly slowed or blocked the outgrowth of implanted LLC while control exosomes lacking GM-CSF were ineffective. Examination of tumor-infiltrating immune cells from mice vaccinated with the GM-CSF-expressing exosomes showed robust tumor-reactive CD8+ T effector responses, Th1 cytokine responses, and higher CD8+ T effector/CD4+CD25+Foxp3+ T regulatory cell ratio in the tumors. We conclude that a similar vaccine derived from GM-CSF- expressing human ESCs can be employed as a preventative vaccine for humans with an increased risk of developing cancer.

8.
Genom Data ; 7: 82-5, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26981369

RESUMO

Astronauts participating in long duration space missions are likely to be exposed to ionizing radiation associated with highly energetic and charged heavy particles. Previously proposed gene biomarkers for radiation exposure include phosphorylated H2A Histone Family, Member X (γH2AX), Tumor Protein 53 (TP53), and Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A). However, transcripts of these genes may not be the most suitable biomarkers for radiation exposure due to a lack of sensitivity or specificity. As part of a larger effort to develop lab-on-a-chip methods for detecting radiation exposure events using blood samples, we designed a dose-course microarray study in order to determine coding and non-coding RNA transcripts undergoing differential expression immediately following radiation exposure. The main goal was to elicit a small set of sensitive and specific radiation exposure biomarkers at low, medium, and high levels of ionizing radiation exposure. Four separate levels of radiation were considered: 0 Gray (Gy) control; 0.3 Gy; 1.5 Gy; and 3.0 Gy with four replicates at each radiation level. This report includes raw gene expression data files from the resulting microarray experiments from all three radiation levels ranging from a lower, typical exposure than an astronaut might see (0.3 Gy) to high, potentially lethal, levels of radiation (3.0 Gy). The data described here is available in NCBI's Gene Expression Omnibus (GEO), accession GSE64375.

9.
J Cell Mol Med ; 20(2): 217-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26499096

RESUMO

Vascular calcification is a frequent complication of atherosclerosis, diabetes and chronic kidney disease. In the latter group of patients, calcification is commonly seen in tunica media where smooth muscle cells (SMC) undergo osteoblastic transformation. Risk factors such as elevated phosphorus levels and vitamin D3 analogues have been identified. In the light of earlier observations by our group and others, we sought to inhibit SMC calcification via induction of ferritin. Human aortic SMC were cultured using ß-glycerophosphate with activated vitamin D3 , or inorganic phosphate with calcium, and induction of alkaline phosphatase (ALP) and osteocalcin as well as accumulation of calcium were used to monitor osteoblastic transformation. In addition, to examine the role of vitamin D3 analogues, plasma samples from patients on haemodialysis who had received calcitriol or paricalcitol were tested for their tendency to induce calcification of SMC. Addition of exogenous ferritin mitigates the transformation of SMC into osteoblast-like cells. Importantly, pharmacological induction of heavy chain ferritin by 3H-1,2-Dithiole-3-thione was able to inhibit the SMC transition into osteoblast-like cells and calcification of extracellular matrix. Plasma samples collected from patients after the administration of activated vitamin D3 caused significantly increased ALP activity in SMC compared to the samples drawn prior to activated vitamin D3 and here, again induction of ferritin diminished the osteoblastic transformation. Our data suggests that pharmacological induction of ferritin prevents osteoblastic transformation of SMC. Hence, utilization of such agents that will cause enhanced ferritin synthesis may have important clinical applications in prevention of vascular calcification.


Assuntos
Ferritinas/metabolismo , Miócitos de Músculo Liso/fisiologia , Osteoblastos/fisiologia , Fosfatase Alcalina/metabolismo , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/fisiologia , Calcitriol/metabolismo , Cálcio/metabolismo , Células Cultivadas , Colecalciferol/metabolismo , Ergocalciferóis/metabolismo , Glicerofosfatos/farmacologia , Humanos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Fosfatos/metabolismo , Tionas/farmacologia , Tiofenos/farmacologia , Calcificação Vascular/metabolismo , Calcificação Vascular/fisiopatologia
10.
Free Radic Biol Med ; 89: 248-62, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26409224

RESUMO

Intracellular free heme predisposes to oxidant-mediated tissue damage. We hypothesized that free heme causes alterations in myocardial contractility via disturbed structure and/or regulation of the contractile proteins. Isometric force production and its Ca(2+)-sensitivity (pCa50) were monitored in permeabilized human ventricular cardiomyocytes. Heme exposure altered cardiomyocyte morphology and evoked robust decreases in Ca(2+)-activated maximal active force (Fo) while increasing Ca(2+)-independent passive force (F passive). Heme treatments, either alone or in combination with H2O2, did not affect pCa50. The increase in F passive started at 3 µM heme exposure and could be partially reversed by the antioxidant dithiothreitol. Protein sulfhydryl (SH) groups of thick myofilament content decreased and sulfenic acid formation increased after treatment with heme. Partial restoration in the SH group content was observed in a protein running at 140 kDa after treatment with dithiothreitol, but not in other proteins, such as filamin C, myosin heavy chain, cardiac myosin binding protein C, and α-actinin. Importantly, binding of heme to hemopexin or alpha-1-microglobulin prevented its effects on cardiomyocyte contractility, suggesting an allosteric effect. In line with this, free heme directly bound to myosin light chain 1 in human cardiomyocytes. Our observations suggest that free heme modifies cardiac contractile proteins via posttranslational protein modifications and via binding to myosin light chain 1, leading to severe contractile dysfunction. This may contribute to systolic and diastolic cardiac dysfunctions in hemolytic diseases, heart failure, and myocardial ischemia-reperfusion injury.


Assuntos
Ventrículos do Coração/patologia , Heme/farmacologia , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/patologia , Quinase de Cadeia Leve de Miosina/metabolismo , Citoesqueleto de Actina , Actinina/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas de Transporte/metabolismo , Células Cultivadas , Filaminas/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Humanos , Immunoblotting , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxidantes/farmacologia , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/metabolismo
11.
PLoS One ; 10(8): e0134144, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26270345

RESUMO

Earlier observations indicate that free heme is selectively toxic to cells lacking heme oxygenase-1 (HO-1) but how this enzyme prevents heme toxicity remains unexplained. Here, using A549 (human lung cancer) and immortalized human bronchial epithelial cells incubated with exogenous heme, we find knock-down of HO-1 using siRNA does promote the accumulation of cell-associated heme and heme-induced cell death. However, it appears that the toxic effects of heme are exerted by "loose" (probably intralysosomal) iron because cytotoxic effects of heme are lessened by pre-incubation of HO-1 deficient cells with desferrioxamine (which localizes preferentially in the lysosomal compartment). Desferrioxamine also decreases lysosomal rupture promoted by intracellularly generated hydrogen peroxide. Supporting the importance of endogenous oxidant production, both chemical and siRNA inhibition of catalase activity predisposes HO-1 deficient cells to heme-mediated killing. Importantly, it appears that HO-1 deficiency somehow blocks the induction of ferritin; control cells exposed to heme show ~10-fold increases in ferritin heavy chain expression whereas in heme-exposed HO-1 deficient cells ferritin expression is unchanged. Finally, overexpression of ferritin H chain in HO-1 deficient cells completely prevents heme-induced cytotoxicity. Although two other products of HO-1 activity--CO and bilirubin--have been invoked to explain HO-1-mediated cytoprotection, we conclude that, at least in this experimental system, HO-1 activity triggers the induction of ferritin and the latter is actually responsible for the cytoprotective effects of HO-1 activity.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Heme/toxicidade , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Desferroxamina/farmacologia , Ferritinas/biossíntese , Técnicas de Silenciamento de Genes , Heme Oxigenase-1/genética , Humanos , Lisossomos/metabolismo , Lisossomos/patologia
12.
Oncoimmunology ; 3(7): e950163, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25610737

RESUMO

Polymorphonuclear neutrophils (PMNs), the main effectors of the innate immune system, have rarely been considered as an anticancer therapeutic tool. However, recent investigations using animal models and preliminary clinical studies have highlighted the potential antitumor efficacy of PMNs. In the current study, we find that PMNs from some healthy donors naturally have potent cancer-killing activity against 4 different human cancer cell lines. The killing activity appears to be cancer cell-specific since PMNs did not kill primary normal epithelial cells or an immortalized breast epithelial cell line. Transfecting the immortalized mammary cells with plasmids expressing activated forms of the rat sarcoma viral oncogene homolog (Ras) and teratocarcinoma oncogene 21 (TC21) oncogenes was sufficient to provoke aggressive attack by PMNs. However, transfection with activated Ras-related C3 botulinum toxin substrate (Rac1) was ineffective, suggesting specificity in PMN-targeting of neoplastic cells. Furthermore, PMNs from lung cancer patients were also found to exhibit relatively poor cancer-killing activity compared to the cytolytic activity of the average healthy donor. Taken together, our results suggest that PMN-based treatment regimens may represent a paradigm shift in cancer immunotherapy that may be easily introduced into the clinic to benefit a subset of patients with PMN-vulnerable tumors.

13.
Oxid Med Cell Longev ; 2013: 703571, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23766858

RESUMO

Numerous disease states are associated with hemolysis or hemorrhage. Because red cells in the extravascular space tend to lyse quickly, hemoglobin (Hb) is released and is prone to autoxidation producing MetHb. Inorganic and organic peroxides may convert Hb and MetHb to higher oxidation states such as ferrylHb. FerrylHb is not a single chemical entity but is a mixture of globin- and porphyrin-centered radicals and covalently cross-linked Hb multimers. Oxidized Hb species are potent prooxidants caused mainly by heme release from oxidized Hb. Moreover, ferrylHb is a strong proinflammatory agonist that targets vascular endothelial cells. This proinflammatory effect of ferrylHb requires actin polymerization, is characterized by the upregulation of proinflammatory adhesion molecules, and is independent of heme release. Deleterious effects of native Hb are controlled by haptoglobin (Hp) that binds cell-free Hb avidly and facilitates its removal from circulation through the CD163 macrophage scavenger receptor-mediated endocytosis. Under circumstances of Hb oxidation, Hp can prevent heme release from MetHb, but unfortunately the Hp-mediated removal of Hb is severely compromised when Hb is structurally altered such as in ferrylHb allowing deleterious downstream reactions to occur even in the presence of Hp.


Assuntos
Contusões/metabolismo , Contusões/patologia , Hemoglobinas/metabolismo , Animais , Eritrócitos/metabolismo , Eritrócitos/patologia , Heme/metabolismo , Humanos , Oxirredução
14.
Oncoimmunology ; 2(3): e23403, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23802081

RESUMO

These are exciting times for the field of cancer immunotherapy. Although the clinical efficacy of monoclonal antibodies has been demonstrated since the early 1990s, the therapeutic profile of other immunotherapeutic approaches-especially vaccines-has not yet been formally clarified. However, the recent success of several immunotherapeutic regimens in cancer patients has boosted the development of this treatment modality. These achievements stemmed from recent scientific advances demonstrating the tolerogenic nature of cancer and the fundamental role of the tumor immune microenvironment in the suppression of antitumor immunity. New immunotherapeutic strategies against cancer attempt to promote protective antitumor immunity while disrupting the immunoregulatory circuits that contribute to tumor tolerance. Cancer vaccines differ from other anticancer immunotherapeutics in that they initiate the dynamic process of activating the immune system so as to successfully re-establish a state of equilibrium between tumor cells and the host. This article reviews recent clinical trials involving several different cancer vaccines and describes some of the most promising immunotherapeutic approaches that harness antitumor T-cell responses. In addition, we describe strategies whereby cancer vaccines can be exploited in combination with other therapeutic approach to overcome-in a synergistic fashion-tumor immunoevasion. Finally, we discuss prospects for the future development of broad spectrum prophylactic anticancer vaccines.

15.
J Immunol ; 190(6): 2984-93, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23390297

RESUMO

Tumor stromal alternatively activated macrophages are important determinants of antitumor T lymphocyte responses, intratumoral neovascularization, and metastatic dissemination. Our recent efforts to investigate the mechanism of macrophage migration inhibitory factor (MIF) in antagonizing antimelanoma immune responses reveal that macrophage-derived MIF participates in macrophage alternative activation in melanoma-bearing mice. Both peripheral and tumor-associated macrophages (TAMs) isolated from melanoma bearing MIF-deficient mice display elevated proinflammatory cytokine expression and reduced anti-inflammatory, immunosuppressive, and proangiogenic gene products compared with macrophages from tumor-bearing MIF wild-type mice. Moreover, TAMs and myeloid-derived suppressor cells from MIF-deficient mice exhibit reduced T lymphocyte immunosuppressive activities compared with those from their wild-type littermates. Corresponding with reduced tumor immunosuppression and neo-angiogenic potential by TAMs, MIF deficiency confers protection against transplantable s.c. melanoma outgrowth and melanoma lung metastatic colonization. Finally, we report for the first time, to our knowledge, that our previously discovered MIF small molecule antagonist, 4-iodo-6-phenylpyrimidine, recapitulates MIF deficiency in vitro and in vivo, and attenuates tumor-polarized macrophage alternative activation, immunosuppression, neoangiogenesis, and melanoma tumor outgrowth. These studies describe an important functional contribution by MIF to TAM alternative activation and provide justification for immunotherapeutic targeting of MIF in melanoma patients.


Assuntos
Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/metabolismo , Ativação de Macrófagos/imunologia , Fatores Inibidores da Migração de Macrófagos/fisiologia , Melanoma Experimental/imunologia , Animais , Carcinoma Pulmonar de Lewis/patologia , Linhagem Celular Tumoral , Células Cultivadas , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Ativação de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/biossíntese , Fatores Inibidores da Migração de Macrófagos/deficiência , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
16.
Biochem J ; 449(1): 189-94, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22989377

RESUMO

Induction or ectopic overexpression of HO-1 (haem oxygenase 1) protects against a wide variety of disorders. These protective effects have been variably ascribed to generation of carbon monoxide (released during cleavage of the alpha-methene bridge of haem) and/or to production of the antioxidant bilirubin. We investigated HO-1-overexpressing A549 cells and find that, as expected, HO-1-overexpressing cells are resistant to killing by hydrogen peroxide. Surprisingly, these cells have approximately twice the normal amount of intracellular iron which usually tends to amplify oxidant killing. However, HO-1-overexpressing cells contain only ~25% as much 'loose' (probably redox active) iron. Indeed, inhibition of ferritin synthesis [via siRNA (small interfering RNA) directed at the ferritin heavy chain] sensitizes the HO-1-overexpressing cells to peroxide killing. It appears that HO-1 overexpression leads to enhanced destruction of haem, consequent 2-3-fold induction of ferritin, and compensatory increases in transferrin receptor expression and haem synthesis. However, there is no functional haem deficiency because cellular oxygen consumption and catalase activity are similar in both cell types. We conclude that, at least in many cases, the cytoprotective effects of HO-1 induction or forced overexpression may derive from elevated expression of ferritin and consequent reduction of redox active 'loose' iron.


Assuntos
Ferritinas/metabolismo , Regulação Enzimológica da Expressão Gênica , Heme Oxigenase-1/genética , Líquido Intracelular/metabolismo , Ferro/metabolismo , Linhagem Celular Tumoral , Ferritinas/biossíntese , Heme Oxigenase-1/biossíntese , Humanos
17.
PLoS One ; 7(11): e50607, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185639

RESUMO

While the cytotoxic effects of titanium dioxide (TiO(2)) nanoparticles have been under intense investigation, the molecular mechanisms of this cytotoxicity remain unknown. Here we investigated the influence of oncogenic transformation and a major apoptotic signaling pathway on cellular responses to TiO(2) nanoparticles. Isogenic wild-type (WT) and apoptosis-resistant (Bak(-/-)Bax(-/-)) cell lines with and without tumorigenic transformation were examined. TiO(2) nanoparticles preferentially reduced viability of tumorigenic cells in a dose-dependent fashion compared with their untransformed counterparts. Importantly, the elevated cytotoxicity of TiO(2) nanoparticles was independent of a major Bak/Bax-dependent apoptosis pathway. Because transformation does not affect cellular fluid-phase endocytosis or nanoparticle uptake, it is likely that the increased cytotoxicity in tumor cells is due to the interaction between TiO(2) nanoparticles and the lysosomal compartment. Overall, our data indicate that TiO(2) nanoparticles induce cytotoxicity preferentially in transformed cells independent of a major apoptotic signaling pathway.


Assuntos
Citotoxinas/farmacologia , Lisossomos/efeitos dos fármacos , Nanopartículas Metálicas/química , Titânio/farmacologia , Transporte Biológico/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Transformada , Expressão Gênica , Humanos , Transdução de Sinais , Proteína Killer-Antagonista Homóloga a bcl-2/deficiência , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/deficiência , Proteína X Associada a bcl-2/genética
18.
PLoS One ; 7(7): e42289, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22860107

RESUMO

The antigenic similarity between tumors and embryos has been appreciated for many years and reflects the expression of embryonic gene products by cancer cells and/or cancer-initiating stem cells. Taking advantage of this similarity, we have tested a prophylactic lung cancer vaccine composed of allogeneic murine embryonic stem cells (ESC). Naïve C57BL/6 mice were vaccinated with ESC along with a source of granulocyte macrophage-colony stimulating factor (GM-CSF) in order to provide immunostimulatory adjuvant activity. Vaccinated mice were protected against subsequent challenge with implantable Lewis lung carcinoma (LLC). ESC-induced anti-tumor immunity was not due to a non-specific "allo-response" as vaccination with allogeneic murine embryonic fibroblasts did not protect against tumor outgrowth. Vaccine efficacy was associated with robust tumor-reactive primary and memory CD8(+) T effector responses, Th1 cytokine response, higher intratumoral CD8(+) T effector/CD4(+)CD25(+)Foxp3(+) T regulatory cell ratio, and reduced myeloid derived suppressor cells in the spleen. Prevention of tumorigenesis was found to require a CD8-mediated cytotoxic T lymphocyte (CTL) response because in vivo depletion of CD8(+) T lymphocytes completely abrogated the protective effect of vaccination. Importantly, this vaccination strategy also suppressed the development of lung cancer induced by the combination of carcinogen administration and chronic pulmonary inflammation. Further refinement of this novel vaccine strategy and identification of shared ESC/tumor antigens may lead to immunotherapeutic options for lung cancer patients and, perhaps more importantly, could represent a first step toward the development of prophylactic cancer vaccines.


Assuntos
Vacinas Anticâncer/administração & dosagem , Carcinoma Pulmonar de Lewis/prevenção & controle , Células-Tronco Embrionárias , Animais , Linfócitos T CD8-Positivos/imunologia , Carcinoma Pulmonar de Lewis/imunologia , Citocinas/biossíntese , Memória Imunológica , Camundongos
19.
Mol Cancer ; 11: 60, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22917272

RESUMO

BACKGROUND: Constitutive activation of Ras in immortalized bronchial epithelial cells increases electron transport chain activity, oxygen consumption and tricarboxylic acid cycling through unknown mechanisms. We hypothesized that members of the Ras family may stimulate respiration by enhancing the expression of the Vb regulatory subunit of cytochrome c oxidase (COX). RESULTS: We found that the introduction of activated H-Ras(V12) into immortalized human bronchial epithelial cells increased eIF4E-dependent COX Vb protein expression simultaneously with an increase in COX activity and oxygen consumption. In support of the regulation of COX Vb expression by the Ras family, we also found that selective siRNA-mediated inhibition of K-Ras expression in A549 lung adenocarcinoma cells reduced COX Vb protein expression, COX activity, oxygen consumption and the steady-state concentration of ATP. We postulated that COX Vb-mediated activation of COX activity may be required for the anchorage-independent growth of A549 cells as soft agar colonies or as lung xenografts. We transfected the A549 cells with COX Vb small interfering or shRNA and observed a significant reduction of their COX activity, oxygen consumption, ATP and ability to grow in soft agar and as poorly differentiated tumors in athymic mice. CONCLUSION: Taken together, our findings indicate that the activation of Ras increases COX activity and mitochondrial respiration in part via up-regulation of COX Vb and that this regulatory subunit of COX may have utility as a Ras effector target for the development of anti-neoplastic agents.


Assuntos
Adenocarcinoma/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Neoplasias Pulmonares/enzimologia , Proteínas ras/metabolismo , Adenocarcinoma/química , Adenocarcinoma/genética , Adenocarcinoma de Pulmão , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Ativação Enzimática , Fator de Iniciação 4E em Eucariotos/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Camundongos , Camundongos Nus , Consumo de Oxigênio , RNA Interferente Pequeno/genética , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...