Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Breast Cancer ; 9(1): 78, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773066

RESUMO

Mutations in the TP53 tumor suppressor gene occur in >80% of the triple-negative or basal-like breast cancer. To test whether neomorphic functions of specific TP53 missense mutations contribute to phenotypic heterogeneity, we characterized phenotypes of non-transformed MCF10A-derived cell lines expressing the ten most common missense mutant p53 proteins and observed a wide spectrum of phenotypic changes in cell survival, resistance to apoptosis and anoikis, cell migration, invasion and 3D mammosphere architecture. The p53 mutants R248W, R273C, R248Q, and Y220C are the most aggressive while G245S and Y234C are the least, which correlates with survival rates of basal-like breast cancer patients. Interestingly, a crucial amino acid difference at one position-R273C vs. R273H-has drastic changes on cellular phenotype. RNA-Seq and ChIP-Seq analyses show distinct DNA binding properties of different p53 mutants, yielding heterogeneous transcriptomics profiles, and MD simulation provided structural basis of differential DNA binding of different p53 mutants. Integrative statistical and machine-learning-based pathway analysis on gene expression profiles with phenotype vectors across the mutant cell lines identifies quantitative association of multiple pathways including the Hippo/YAP/TAZ pathway with phenotypic aggressiveness. Further, comparative analyses of large transcriptomics datasets on breast cancer cell lines and tumors suggest that dysregulation of the Hippo/YAP/TAZ pathway plays a key role in driving the cellular phenotypes towards basal-like in the presence of more aggressive p53 mutants. Overall, our study describes distinct gain-of-function impacts on protein functions, transcriptional profiles, and cellular behaviors of different p53 missense mutants, which contribute to clinical phenotypic heterogeneity of triple-negative breast tumors.

2.
Clin Breast Cancer ; 18(5): e1205-e1215, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29933930

RESUMO

BACKGROUND: Activation of the JAK/STAT pathway is common in triple-negative breast cancer (TNBC) and affects the expression of genes controlling immune signaling. A subset of TNBC cases will have somatic amplification of chromosome 9p24.1, encoding PD-L1, PD-L2, and JAK2, which has been associated with decreased survival. MATERIALS AND METHODS: Eleven TNBC cell lines were evaluated using array comparative genomic hybridization. A copy number gain was defined as an array comparative genomic hybridization log2 ratio of ≥ 1. Cell surface expression of programmed cell death ligand 1 (PD-L1) was detected using flow cytometry and compared with the median fluorescence intensity of isotype control immunoglobulin. To selectively inhibit JAK2, lentiviral vectors encoding 2 different short hairpin RNA (shRNA) were generated. JAK2, STAT1, STAT3, phosphorylated (p) STAT1, and pSTAT3 expression were measured by immunoblot. Statistical significance was defined as P < .05. RESULTS: The cell line HCC70 had 9p24.1 copy number amplification that was associated with both increased JAK2 and pSTAT3; however, knockdown of JAK2 inhibited cell growth independently of 9p24.1 copy number status. In TNBC cell lines with 9p24.1 gain or amplification, PD-L1 expression rapidly and strikingly increased 5- to 38-fold with interferon-γ (P < .05), and inducible PD-L1 expression was completely blocked by JAK2 knockdown and the JAK1/2 inhibitor ruxolitinib. In tumor tissue, expression of interferon-γ-related genes correlated with 9p24.1 copy number status. CONCLUSION: These data suggest that the JAK2/STAT1 pathway in TNBC might regulate the dynamic expression of PD-L1 that is induced in the setting of an inflammatory response. Inhibition of JAK2 might provide a synergistic therapy when combined with other immunotherapies in the subset of TNBC with 9p24.1 amplification.


Assuntos
Antígeno B7-H1/genética , Regulação Neoplásica da Expressão Gênica/genética , Janus Quinase 2/genética , Neoplasias de Mama Triplo Negativas/genética , Antígeno B7-H1/biossíntese , Linhagem Celular Tumoral , Feminino , Amplificação de Genes , Humanos , Fator de Transcrição STAT1/genética
3.
Oncogene ; 37(17): 2237-2250, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29398709

RESUMO

Alterations in ERBB family members have been associated with many tumor malignancies. EGFR and ERBB2 have been extensively explored in clinical oncology and several drugs currently target them therapeutically. However, the significance of ERBB4 as a potential therapeutic target remains mostly unexplored, even though ERBB4 is overexpressed or mutated in many solid tumors. Using a unique functional protein microarray platform, we found that ibrutinib inhibits ERBB4 activity in the same nM range as its canonical target, BTK. Cell-based assays revealed that ibrutinib treatment inhibited cell growth and decreased phosphorylation of ERBB4 and downstream targets MEK and ERK in cancer cell lines with high levels of endogenous ERBB4. In vivo, ibrutinib-responsive mouse xenograft tumors showed decreased tumor volumes with ibrutinib treatment. Interestingly, global gene expression comparisons between responsive and non-responsive cells identified a signature featuring the WNT pathway that predicts growth responsiveness to ibrutinib. Non-responsive ERBB4-expressing cell lines featured elevated activity of the WNT pathway, through the overexpression of WNT5A. Moreover, inhibition of WNT5A expression led to an ibrutinib response in non-responsive cell lines. Our data show that inhibiting ERBB4 reduces cell growth in cells that have low WNT5A expression and reveal a link between the ERBB4 and WNT pathways.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias/patologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptor ErbB-4/antagonistas & inibidores , Proteína Wnt-5a/fisiologia , Células A549 , Adenina/análogos & derivados , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Piperidinas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Control Release ; 204: 20-9, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25681050

RESUMO

Human cells contain hundreds of kinase enzymes that regulate several cellular processes, which likely include transgene delivery and expression. We identified several kinases that influence gene delivery and/or expression by performing a kinome-level screen in which, we identified small-molecule kinase inhibitors that significantly enhanced non-viral (polymer-mediated) transgene (luciferase) expression in cancer cells. The strongest enhancement was observed with several small-molecule inhibitors of Polo-like Kinase 1 (PLK 1) (e.g., HMN-214 and BI 2536), which enhanced luciferase expression up to 30-fold by arresting cells in the G2/M phase of the cell cycle and influencing intracellular trafficking of plasmid DNA. Knockdown of PLK 1 using an shRNA-expressing lentivirus further confirmed the enhancement of polymer-mediated transgene expression. In addition, pairwise and three-way combinations of PLK1 inhibitors with the histone deacetylase-1 (HDAC-1) inhibitor Entinostat and the JAK/STAT inhibitor AG-490 enhanced luciferase expression to levels significantly higher than individual drug treatments acting alone. These findings indicate that inhibition of specific intracellular kinases (e.g., PLK1) can significantly enhance non-viral transgene expression for applications in biotechnology and medicine.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Óxidos N-Cíclicos/farmacologia , Técnicas de Transferência de Genes , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pteridinas/farmacologia , Piridinas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Sulfonamidas/farmacologia , Transgenes/genética , Técnicas de Cultura de Células , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Inativação Gênica , Proteínas de Fluorescência Verde/genética , Humanos , Luciferases/genética , Masculino , Plasmídeos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Quinase 1 Polo-Like
5.
Sci Rep ; 4: 6609, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25312029

RESUMO

Many drugs are effective in the early stage of treatment, but patients develop drug resistance after a certain period of treatment, causing failure of the therapy. An important example is Herceptin, a popular monoclonal antibody drug for breast cancer by specifically targeting human epidermal growth factor receptor 2 (Her2). Here we demonstrate a quantitative binding kinetics analysis of drug-target interactions to investigate the molecular scale origin of drug resistance. Using a surface plasmon resonance imaging, we measured the in situ Herceptin-Her2 binding kinetics in single intact cancer cells for the first time, and observed significantly weakened Herceptin-Her2 interactions in Herceptin-resistant cells, compared to those in Herceptin-sensitive cells. We further showed that the steric hindrance of Mucin-4, a membrane protein, was responsible for the altered drug-receptor binding. This effect of a third molecule on drug-receptor interactions cannot be studied using traditional purified protein methods, demonstrating the importance of the present intact cell-based binding kinetics analysis.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Receptor ErbB-2/metabolismo , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/metabolismo , Anticorpos Monoclonais Humanizados/farmacocinética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Interações Medicamentosas , Feminino , Humanos , Mucina-4/metabolismo , Ligação Proteica , Ressonância de Plasmônio de Superfície , Trastuzumab
6.
J Lab Autom ; 16(2): 126-33, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21609693

RESUMO

Antibody microarrays are gaining popularity as a high-throughput technology to investigate the proteome. However, protein extracts from most body fluid or biopsy samples are available in very small volumes and are often unsuitable for large-scale antibody microarray studies. To demonstrate the potential for protein analysis with as little as a few nanoliters of sample, we have developed a new technology called NanoProbeArrays based on piezoelectric liquid dispensing for non-contact printing and probing of antibody arrays. Instead of flooding the protein sample on the antibody microarray surface, as in conventional microarray screening, a piezoelectric inkjet printer is used to dispense nanoliters of fluorescently labeled proteins over the antibody spots on the array. The ability of NanoProbeArrays to precisely identify and reliably distinguish between test proteins from different sources, without any loss of sensitivity and specificity as compared with conventional antibody microarrays, is illustrated here. The utility of NanoProbeArrays for biomarker identification in a complex biological sample was tested by detecting the cytokine interleukin-4 in serum. The significant reduction in volume of sample during NanoProbeArray analysis, as compared with conventional antibody microarrays, offers new opportunities for basic and applied proteomic research.


Assuntos
Análise Serial de Proteínas/métodos , Proteínas/análise , Proteômica/métodos , Manejo de Espécimes/métodos , Biomarcadores/análise , Nanotecnologia/métodos
8.
Nat Chem ; 3(3): 249-55, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21336333

RESUMO

Electrochemical impedance spectroscopy is a crucial tool for the detection and study of various biological substances, from DNA and proteins to viruses and bacteria. It does not require any labelling species, and methods based on it have been developed to study cellular processes (such as cell spreading, adhesion, invasion, toxicology and mobility). However, data have so far lacked spatial information, which is essential for investigating heterogeneous processes and imaging high-throughput microarrays. Here, we report an electrochemical impedance microscope based on surface plasmon resonance that resolves local impedance with submicrometre spatial resolution. We have used an electrochemical impedance microscope to monitor the dynamics of cellular processes (apoptosis and electroporation of individual cells) with millisecond time resolution. The high spatial and temporal resolution makes it possible to study individual cells, but also resolve subcellular structures and processes without labels, and with excellent detection sensitivity (~2 pS). We also describe a model that simulates cellular and electrochemical impedance microscope images based on local dielectric constant and conductivity.


Assuntos
Técnicas Eletroquímicas , Microscopia/métodos , Análise de Célula Única/métodos , Ressonância de Plasmônio de Superfície/métodos , Apoptose , Linhagem Celular Tumoral , Fenômenos Fisiológicos Celulares , Eletrodos , Eletroporação , Ouro/química , Humanos , Microscopia Eletrônica , Propriedades de Superfície
9.
Biochem Biophys Res Commun ; 405(1): 1-6, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21167816

RESUMO

In this study we investigated E6 and E7 oncogenes from the Human Papilloma Virus as targets for siRNA knockdown in order to boost the efficacy of the anti-cancer drug 'tumor necrosis factor-related apoptosis inducing ligand' (TRAIL). SiHa cells were treated with TRAIL following transfection with E6/E7 siRNA and the expression of death receptors DR4 and DR5, cell viability, apoptosis, senescence and cell cycle analysis were undertaken using flow cytometry, MTT viability assay and cellular ß-galactosidase activity assays. E6/E7 siRNA resulted in significant upregulation of death receptors DR4 and DR5 but did not result in an enhanced sensitivity to TRAIL. Our results indicate that E6/E7-siRNA induces senescence rather than apoptosis in SiHa cells. The occurrence of senescence in drug resistant cervical cancer cells such as the SiHa cell line by E6/E7 siRNA, among other factors, may prevent TRAIL induced activation of extrinsic and intrinsic pathways that lead to apoptotic cell death. Our findings are significant for combinatorial strategies for cancer therapy since the induction of senescence can preclude apoptosis rendering cells to be recalcitrant to TRAIL treatment.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Técnicas de Silenciamento de Genes , Papillomavirus Humano 16 , Proteínas Oncogênicas Virais/antagonistas & inibidores , Proteínas E7 de Papillomavirus/antagonistas & inibidores , Infecções por Papillomavirus/terapia , Proteínas Repressoras/antagonistas & inibidores , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico , Neoplasias do Colo do Útero/terapia , Linhagem Celular Tumoral , Senescência Celular/genética , Feminino , Humanos , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/tratamento farmacológico , RNA Interferente Pequeno/genética , Proteínas Repressoras/genética , Transfecção , Neoplasias do Colo do Útero/tratamento farmacológico
10.
Nanomedicine (Lond) ; 5(3): 369-78, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20394531

RESUMO

AIM: The goal of our research is to develop an ultrasensitive diagnostic platform called 'NanoMonitor' to enable rapid label-free analysis of a highly promising class of biomarkers called glycans (oligosaccharide chains attached to proteins) with high sensitivity and selectivity. The glycosylation of fetuin - a serum protein - and extracts from a human pancreatic cancer line was analyzed to demonstrate the capabilities of the NanoMonitor. MATERIAL & METHODS: The NanoMonitor device consists of a silicon chip with an array of gold electrodes forming multiple sensor sites and works on the principle of electrochemical impedance spectroscopy. Each sensor site is overlaid with a nanoporous alumina membrane that forms a high density of nanowells on top of each electrode. Lectins (proteins that bind to and recognize specific glycan structures) are conjugated to the surface of the electrode. When specific glycans from a test sample bind to lectins at the base of each nanowell, a perturbation of electrical double-layer occurs, which results in a change in the impedance. Using the lectins Sambucs nigra agglutinin (SNA) and Maackia amurensis agglutinin (MAA), subtle variations to the glycan chains of fetuin were investigated. Protein extracts from BXPC-3, a cultured human pancreatic cancer cell line were also analyzed for binding to SNA and MAA lectins. The performance of the NanoMonitor was compared to a conventional laboratory technique: lectin-based enzyme linked immunosorbent assay (ELISA). RESULTS & DISCUSSION: The NanoMonitor was used to identify glycoform variants of fetuin and global differences in glycosylation of protein extracts from cultured human pancreatic cancerous versus normal cells. While results from NanoMonitor correlate very well with results from lectin-based ELISA, the NanoMonitor is rapid, completely label free, requires just 10 microl of sample, is approximately five orders of magnitude more sensitive and highly selective over a broad dynamic range of glycoprotein concentrations. CONCLUSION: Based on its performance metrics, the NanoMonitor has excellent potential for development as a point-of-care handheld electronic biosensor device for routine detection of glycan biomarkers from clinical samples.


Assuntos
Biomarcadores/química , Técnicas Biossensoriais/instrumentação , Eletroquímica/instrumentação , Nanotecnologia/instrumentação , Polissacarídeos/análise , Proteínas/química , Biomarcadores/metabolismo , Técnicas Biossensoriais/métodos , Linhagem Celular Tumoral , Eletroquímica/métodos , Desenho de Equipamento , Glicosilação , Humanos , Lectinas/química , Lectinas/metabolismo , Nanotecnologia/métodos , Polissacarídeos/metabolismo , Proteínas/metabolismo , Sensibilidade e Especificidade , alfa-Fetoproteínas/análise , alfa-Fetoproteínas/metabolismo
11.
Biochem Biophys Res Commun ; 375(4): 526-30, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18718447

RESUMO

Glycans have great potential as disease biomarkers and therapeutic targets. However, the major challenge for glycan biomarker identification from clinical samples is the low abundance of key glycosylated proteins. To demonstrate the potential for glycan analysis with nanoliter amounts of glycoprotein, we have developed a new technology (Lectin NanoProbeArray) based on piezoelectric liquid dispensing for non-contact printing and probing of a lectin array. Instead of flooding the glycoprotein probe on the lectin array surface, as in conventional microarray screening, a piezoelectric printer is used to dispense nanoliters of fluorescently labeled glycoprotein probe over the lectin spots on the array. As a proof-of-concept, the ability of Lectin NanoProbeArrays to precisely identify and reliably distinguish between the closely related glycoforms of fetuin is illustrated here. Sensitivity levels comparable to lectin arrays that use evanescent-field scanners was achieved along with several orders of magnitude reduction in the amount of probe required for glycosylation analysis.


Assuntos
Glicoproteínas/análise , Lectinas/química , Nanoestruturas/química , Nanotecnologia/métodos , Polissacarídeos/análise , Biomarcadores/análise , Corantes Fluorescentes/química , Glicosilação , Impressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...