Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 57(14): 3687-3692, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29791328

RESUMO

We report on the coupling of whispering gallery modes in a 500-µm-radius silicon microsphere to a femtosecond-laser-inscribed glass optical waveguide. The shallow glass waveguide with a large mode field diameter in the near-infrared is written at a depth of 25 µm below the glass surface, resulting in a high excitation impact parameter of 525 µm for the microsphere. The excited whispering gallery modes of the silicon microsphere have quality factors of approximately 105 in the 90° elastic scattering and 0° transmission. Integration of such spherical silicon microresonators on femtosecond-laser-inscribed glass waveguides is promising for photonic communication, computation, and sensing applications.

2.
Sci Rep ; 6: 35566, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27748428

RESUMO

Diamond is a promising platform for sensing and quantum processing owing to the remarkable properties of the nitrogen-vacancy (NV) impurity. The electrons of the NV center, largely localized at the vacancy site, combine to form a spin triplet, which can be polarized with 532 nm laser light, even at room temperature. The NV's states are isolated from environmental perturbations making their spin coherence comparable to trapped ions. An important breakthrough would be in connecting, using waveguides, multiple diamond NVs together optically. However, still lacking is an efficient photonic fabrication method for diamond akin to the photolithographic methods that have revolutionized silicon photonics. Here, we report the first demonstration of three dimensional buried optical waveguides in diamond, inscribed by focused femtosecond high repetition rate laser pulses. Within the waveguides, high quality NV properties are observed, making them promising for integrated magnetometer or quantum information systems on a diamond chip.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA