Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ground Water ; 58(4): 511-523, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31599963

RESUMO

Water table fluctuation (WTF) methods are a primary and well-established way to determine groundwater recharge based on the direct response of the water table to precipitation input. An emerging complexity of recharge is whether it occurs as an episodic and transient process, or a continuous steady-state process, however, most studies have not focused on these short-term vs. long-term timescales, in part because of a lack of data resolution. Here, high-resolution (subhourly) precipitation and water-level data are analyzed for wells in the suburbs of New York City using two contrasting WTF approaches, with a common mathematical basis, that are suited to episodic and continuous processes. The resulting hourly recharge results, like the individual water-level records from comparable wells, are sensitive indicators of subtle differences in aquifer conditions such as thickness of the unsaturated zone, position in the flow system and localized preferential flow. While the episodic, transient approach excludes diffuse recharge by design, the continuous, steady-state approach is influenced by short-term precipitation events, and therefore integrates transient processes to some extent. However, the continuous, steady-state approach is subject to its own limitations relating to position in the aquifer system, and may overestimate recharge if aquifer conditions are not well understood. More widespread use of higher resolution data as well as understanding aquifer conditions and refining aquifer parameters would improve WTF recharge estimation.


Assuntos
Água Subterrânea , Água , Movimentos da Água , Poços de Água
2.
J Environ Manage ; 209: 495-504, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29316470

RESUMO

Urban stormwater control is an urgent concern in megacities where increased impervious surface has disrupted natural hydrology. Water managers are increasingly turning to more environmentally friendly ways of capturing stormwater, called Green Infrastructure (GI), to mitigate combined sewer overflow (CSO) that degrades local water quality. A rapid screening approach is described to evaluate how GI strategies can reduce the amount of stormwater runoff in a low-density residential watershed in New York City. Among multiple possible tools, the L-THIA LID online software package, using the SCS-CN method, was selected to estimate relative runoff reductions expected with different strategies in areas of different land uses in the watershed. Results are sensitive to the relative areas of different land uses, and show that bioretention and raingardens provide the maximum reduction (∼12%) in this largely residential watershed. Although commercial, industrial and high-density residential areas in the watershed are minor, larger runoff reductions from disconnection strategies and porous pavement in parking lots are also possible. Total stormwater reductions from various combinations of these strategies can reach 35-55% for individual land uses, and between 23% and 42% for the entire watershed.


Assuntos
Chuva , Movimentos da Água , Qualidade da Água , Hidrologia , Cidade de Nova Iorque , Porosidade
3.
Chemosphere ; 93(9): 2159-64, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24012138

RESUMO

The heavy metal content and distribution in an urban wetland affected by combined sewer overflow (CSO) discharge during dry conditions was evaluated. Metals identified in the CSO discharge were also measured upstream and downstream of the CSO. Metals were detected in the acid-extractable fraction of the wetland sediments and the roots of Phragmites australis plants. Sediment from the banks of a pool created by the CSO, and from a clay bed upstream were found to be moderately contaminated with Cu, Pb and Zn. Micro X-ray fluorescence (µ-XRF) of Phragmites roots from the CSO banks showed a correlation in the spatial distribution of Fe and Mn, attributed to the formation of mineral plaques on the root surface. Micro X-ray absorption near edge spectroscopy (µ-XANES) revealed that Cu and Zn were complexed with the organic ligands phytate and cysteine. The findings indicated that continuous discharge from the CSO is a source of heavy metals to the wetland. Metals bound to sediments are susceptible to remobilization and subsequent transport, whereas those associated with Phragmites roots may be more effectively sequestered. These observations provide insight into the behavior of heavy metals in urban areas where CSOs discharge into wetlands.


Assuntos
Metais Pesados/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Áreas Alagadas , Biodegradação Ambiental , Monitoramento Ambiental , Recuperação e Remediação Ambiental , Sedimentos Geológicos/química , Poaceae/crescimento & desenvolvimento , Águas Residuárias/química
4.
Sci Total Environ ; 461-462: 158-69, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23722091

RESUMO

Complex scientific and non-scientific considerations are central to the pending decisions about "hydrofracking" or high volume hydraulic fracturing (HVHF) to exploit unconventional natural gas resources worldwide. While incipient plans are being made internationally for major shale reservoirs, production and technology are most advanced in the United States, particularly in Texas and Pennsylvania, with a pending decision in New York State whether to proceed. In contrast to the narrow scientific and technical debate to date, focused on either greenhouse gas emissions or water resources, toxicology and land use in the watersheds that supply drinking water to New York City (NYC), I review the scientific and technical aspects in combination with global climate change and other critical issues in energy tradeoffs, economics and political regulation to evaluate the major liabilities and benefits. Although potential benefits of Marcellus natural gas exploitation are large for transition to a clean energy economy, at present the regulatory framework in New York State is inadequate to prevent potentially irreversible threats to the local environment and New York City water supply. Major investments in state and federal regulatory enforcement will be required to avoid these environmental consequences, and a ban on drilling within the NYC water supply watersheds is appropriate, even if more highly regulated Marcellus gas production is eventually permitted elsewhere in New York State.


Assuntos
Mudança Climática , Tomada de Decisões , Mineração/economia , Mineração/métodos , Gás Natural , Política Pública , Abastecimento de Água/normas , Fenômenos Geológicos , Água Subterrânea/normas , Mineração/legislação & jurisprudência , Mineração/tendências , Cidade de Nova Iorque
5.
Ground Water ; 48(1): 13-4; discussion 14-5, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19702779
6.
Ground Water ; 45(5): 601-15, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17760586

RESUMO

There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/S(s)) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies.


Assuntos
Modelos Teóricos , Movimentos da Água , Abastecimento de Água , Cálcio/análise , Cloretos/análise , Simulação por Computador , Condutividade Elétrica , Fenômenos Geológicos , Geologia , Concentração de Íons de Hidrogênio , Oxigênio/análise , Sódio/análise , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...