Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Trop ; 257: 107277, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38878849

RESUMO

Over the past few years, the widespread outbreak of COVID-19 has caused the death of millions of people worldwide. Early diagnosis of the virus is essential to control its spread and provide timely treatment. Artificial intelligence methods are often used as powerful tools to reach a COVID-19 diagnosis via computed tomography (CT) samples. In this paper, artificial intelligence-based methods are introduced to diagnose COVID-19. At first, a network called CT6-CNN is designed, and then two ensemble deep transfer learning models are developed based on Xception, ResNet-101, DenseNet-169, and CT6-CNN to reach a COVID-19 diagnosis by CT samples. The publicly available SARS-CoV-2 CT dataset is utilized for our implementation, including 2481 CT scans. The dataset is separated into 2108, 248, and 125 images for training, validation, and testing, respectively. Based on experimental results, the CT6-CNN model achieved 94.66% accuracy, 94.67% precision, 94.67% sensitivity, and 94.65% F1-score rate. Moreover, the ensemble learning models reached 99.2% accuracy. Experimental results affirm the effectiveness of designed models, especially the ensemble deep learning models, to reach a diagnosis of COVID-19.


Assuntos
COVID-19 , Aprendizado Profundo , SARS-CoV-2 , Tomografia Computadorizada por Raios X , COVID-19/diagnóstico , Humanos , Tomografia Computadorizada por Raios X/métodos , Redes Neurais de Computação , Sensibilidade e Especificidade , Inteligência Artificial
2.
BMC Med Res Methodol ; 23(1): 189, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605131

RESUMO

BACKGROUND: Cancer, a complex and deadly health concern today, is characterized by forming potentially malignant tumors or cancer cells. The dynamic interaction between these cells and their environment is crucial to the disease. Mathematical models can enhance our understanding of these interactions, helping us predict disease progression and treatment strategies. METHODS: In this study, we develop a fractional tumor-immune interaction model specifically for lung cancer (FTIIM-LC). We present some definitions and significant results related to the Caputo operator. We employ the generalized Laguerre polynomials (GLPs) method to find the optimal solution for the FTIIM-LC model. We then conduct a numerical simulation and compare the results of our method with other techniques and real-world data. RESULTS: We propose a FTIIM-LC model in this paper. The approximate solution for the proposed model is derived using a series of expansions in a new set of polynomials, the GLPs. To streamline the process, we integrate Lagrange multipliers, GLPs, and operational matrices of fractional and ordinary derivatives. We conduct a numerical simulation to study the effects of varying fractional orders and achieve the expected theoretical results. CONCLUSION: The findings of this study demonstrate that the optimization methods used can effectively predict and analyze complex phenomena. This innovative approach can also be applied to other nonlinear differential equations, such as the fractional Klein-Gordon equation, fractional diffusion-wave equation, breast cancer model, and fractional optimal control problems.


Assuntos
Neoplasias Pulmonares , Humanos , Simulação por Computador , Progressão da Doença , Modelos Teóricos
3.
Soft comput ; 27(14): 9519-9531, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287570

RESUMO

Tuberculosis (TB) is a deadly contagious disease that affects vital organs of the body, especially the lungs. Although the disease is preventable, there are still concerns about its continued spread. Without effective prevention or appropriate treatment, TB infection can be fatal to humans. This paper presents a fractional-order TB disease (FTBD) model to analyze TB dynamics and a new optimization method to solve it. The method is based on the basis functions of generalized Laguerre polynomials (GLPs) and some new operational matrices of derivatives in the Caputo sense. Finding the optimal solution to the FTBD model is reduced to solving a system of nonlinear algebraic equations with the aid of GLPs using the Lagrange multipliers method. A numerical simulation is also carried out to determine the impact of the presented method on the susceptible, exposed, infected without treatment, infected with treatment, and recovered cases in the population.

4.
Comput Math Methods Med ; 2023: 1493676, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304324

RESUMO

Parkinson's disease (PD) is one of the significant common neurological disorders of the current age that causes uncontrollable movements like shaking, stiffness, and difficulty. The early clinical diagnosis of this disease is essential for preventing the progression of PD. Hence, an innovative method is proposed here based on combining the crow search algorithm and decision tree (CSADT) for the early PD diagnosis. This approach is used on four crucial Parkinson's datasets, including meander, spiral, voice, and speech-Sakar. Using the presented method, PD is effectively diagnosed by evaluating each dataset's critical features and extracting the primary practical outcomes. The used algorithm was compared with other machine learning algorithms of k-nearest neighbor (KNN), support vector machine (SVM), naive Baye (NB), multilayer perceptron (MLP), decision tree (DT), random tree, logistic regression, support vector machine of radial base functions (SVM of RBFs), and combined classifier in terms of accuracy, recall, and combination measure F1. The analytical results emphasize the used algorithm's superiority over the other selected ones. The proposed model yields nearly 100% accuracy through various trials on the datasets. Notably, a high detection speed achieved the lowest detection time of 2.6 seconds. The main novelty of this paper is attributed to the accuracy of the presented PD diagnosis method, which is much higher than its counterparts.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Movimento , Algoritmos , Análise por Conglomerados , Idioma
5.
Comput Commun ; 176: 234-248, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34149118

RESUMO

The novel 2019 coronavirus disease (COVID-19) has infected over 141 million people worldwide since April 20, 2021. More than 200 countries around the world have been affected by the coronavirus pandemic. Screening for COVID-19, we use fast and inexpensive images from computed tomography (CT) scans. In this paper, ResNet-50, VGG-16, convolutional neural network (CNN), convolutional auto-encoder neural network (CAENN), and machine learning (ML) methods are proposed for classifying Chest CT Images of COVID-19. The dataset consists of 1252 CT scans that are positive and 1230 CT scans that are negative for COVID-19 virus. The proposed models have priority over the other models that there is no need of pre-trained networks and data augmentation for them. The classification accuracies of ResNet-50, VGG-16, CNN, and CAENN were obtained 92.24%, 94.07%, 93.84%, and 93.04% respectively. Among ML classifiers, the nearest neighbor (NN) had the highest performance with an accuracy of 94%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA