Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hematol Oncol Clin North Am ; 38(3): 659-675, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38485551

RESUMO

Gastroesophageal cancers are highly diverse tumors in terms of their anatomic and molecular characteristics, making drug development challenging. Recent advancements in understanding the molecular profiles of these cancers have led to the identification of several new biomarkers. Ongoing clinical trials are investigating new targeted agents with promising results. CLDN18.2 has emerged as a biomarker with established activity of associated targeted therapies. Other targeted agents, such as bemarituzumab and DKN-01, are under active investigation. As new agents are incorporated into the treatment continuum, the questions of biomarker overlap, tumor heterogeneity, and toxicity management will need to be addressed.


Assuntos
Biomarcadores Tumorais , Neoplasias Esofágicas , Terapia de Alvo Molecular , Receptor ErbB-2 , Neoplasias Gástricas , Humanos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Terapia de Alvo Molecular/métodos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Biomarcadores Tumorais/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
2.
bioRxiv ; 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-37333207

RESUMO

Background: Osteosarcoma (OS) patients that present with metastatic disease have a poor prognosis and no curative options. Allogeneic bone marrow transplant (alloBMT) is curative for hematologic malignancies through the graft-versus-tumor (GVT) effect, but to date has been ineffective for solid tumors like OS. CD155 is expressed on OS and interacts strongly with the inhibitory receptors TIGIT and CD96 but also binds to the activating receptor DNAM-1 on natural killer (NK) cells but has never been targeted after alloBMT. Combining adoptive transfer of allogeneic NK (alloNK) cells with CD155 checkpoint blockade after alloBMT may enhance a GVT effect against OS but could enhance toxicities like graft-versus-host-disease (GVHD). Methods: Ex vivo activated and expanded murine NK cells were generated with soluble IL-15/IL- 15Rα. AlloNK and syngeneic NK (synNK) cell phenotype, cytotoxicity, cytokine production, and degranulation against the CD155-expressing murine OS cell line K7M2 were assessed in vitro. Mice bearing pulmonary OS metastases underwent alloBMT followed by infusion of alloNK cells with combinations of anti-CD155 and anti-DNAM-1 blockade. Tumor growth, GVHD and survival were monitored and differential gene expression of lung tissue was assessed by RNA microarray. Results: AlloNK cells exhibited superior cytotoxicity against CD155-expressing OS compared to synNK cells, and this activity was further enhanced by CD155 blockade. CD155 blockade increased alloNK cell degranulation and interferon gamma production through DNAM-1, as these functions were abrogated during DNAM-1 blockade. In vivo, CD155 blockade after alloBMT increased EFS with no exacerbation of GVHD. Treatment with combination CD155 and DNAM-1 blockade ameliorated survival and tumor control benefits seen with CD155 blockade alone. In mice treated with CD155 blockade, genes related to NK cell cytotoxicity were upregulated. DNAM-1 blockade resulted in upregulation of NK cell inhibition. Conclusions: These results demonstrate the safety and efficacy of infusing alloNK cells with CD155 blockade to mount a GVT effect against OS and show benefits are in part through DNAM-1. Defining the hierarchy of receptors that govern alloNK responses will be critical to translating combination adoptive NK cell and immune checkpoint inhibition for patients with solid tumors treated with alloBMT. WHAT IS ALREADY KNOWN ON THIS TOPIC: Allogeneic bone marrow transplant (alloBMT) has yet to show efficacy in treating solid tumors, such as osteosarcoma (OS). CD155 is expressed on OS and interacts with natural killer (NK) cell receptors, such as activating receptor DNAM-1 and inhibitory receptors TIGIT and CD96 and has a dominant inhibitory effect on NK cell activity. Targeting CD155 interactions on allogeneic NK cells could enhance anti-OS responses, but this has not been tested after alloBMT. WHAT THIS STUDY ADDS: CD155 blockade enhances allogeneic natural killer cell-mediated cytotoxicity against osteosarcoma and improved event-free survival after alloBMT in an in vivo mouse model of metastatic pulmonary OS. Addition of DNAM-1 blockade abrogated CD155 blockade-enhanced allogeneic NK cell antitumor responses. HOW THIS STUDY MIGHT AFFECT RESEARCH PRACTICE OR POLICY: These results demonstrate efficacy of allogeneic NK cells combined with CD155 blockade to mount an antitumor response against CD155-expressing OS. Translation of combination adoptive NK cell and CD155 axis modulation offers a platform for alloBMT treatment approaches for pediatric patients with relapsed and refractory solid tumors.

3.
Arterioscler Thromb Vasc Biol ; 38(3): 622-635, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29419407

RESUMO

OBJECTIVE: We explored mechanisms that alter mitochondrial structure and function in pulmonary endothelial cells (PEC) function after hyperoxia. APPROACH AND RESULTS: Mitochondrial structures of PECs exposed to hyperoxia or normoxia were visualized and mitochondrial fragmentation quantified. Expression of pro-fission or fusion proteins or autophagy-related proteins were assessed by Western blot. Mitochondrial oxidative state was determined using mito-roGFP. Tetramethylrhodamine methyl ester estimated mitochondrial polarization in treatment groups. The role of mitochondrially derived reactive oxygen species in mt-fragmentation was investigated with mito-TEMPOL and mitochondrial DNA (mtDNA) damage studied by using ENDO III (mt-tat-endonuclease III), a protein that repairs mDNA damage. Drp-1 (dynamin-related protein 1) was overexpressed or silenced to test the role of this protein in cell survival or transwell resistance. Hyperoxia increased fragmentation of PEC mitochondria in a time-dependent manner through 48 hours of exposure. Hyperoxic PECs exhibited increased phosphorylation of Drp-1 (serine 616), decreases in Mfn1 (mitofusion protein 1), but increases in OPA-1 (optic atrophy 1). Pro-autophagy proteins p62 (LC3 adapter-binding protein SQSTM1/p62), PINK-1 (PTEN-induced putative kinase 1), and LC3B (microtubule-associated protein 1A/1B-light chain 3) were increased. Returning cells to normoxia for 24 hours reversed the increased mt-fragmentation and changes in expression of pro-fission proteins. Hyperoxia-induced changes in mitochondrial structure or cell survival were mitigated by antioxidants mito-TEMPOL, Drp-1 silencing, or inhibition or protection by the mitochondrial endonuclease ENDO III. Hyperoxia induced oxidation and mitochondrial depolarization and impaired transwell resistance. Decrease in resistance was mitigated by mito-TEMPOL or ENDO III and reproduced by overexpression of Drp-1. CONCLUSIONS: Because hyperoxia evoked mt-fragmentation, cell survival and transwell resistance are prevented by ENDO III and mito-TEMPOL and Drp-1 silencing, and these data link hyperoxia-induced mt-DNA damage, Drp-1 expression, mt-fragmentation, and PEC dysfunction.


Assuntos
Células Endoteliais/efeitos dos fármacos , Hiperóxia/metabolismo , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Oxigênio/toxicidade , Artéria Pulmonar/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Dinaminas/genética , Dinaminas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Hiperóxia/genética , Hiperóxia/patologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Estresse Oxidativo/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/ultraestrutura , Ratos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
4.
Pharmacol Res ; 111: 422-433, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27394166

RESUMO

Aging, cancer, and chronic disease have remained at the forefront of basic biological research for decades. Within this context, significant attention has been paid to the role of telomerase, the enzyme responsible for lengthening telomeres, the nucleotide sequences located at the end of chromosomes found in the nucleus. Alterations in telomere length and telomerase activity are a common denominator to the underlying pathology of these diseases. While nuclear-specific, telomere-lengthening effects of telomerase impact cellular/organismal aging and cancer development, non-canonical, extra-nuclear, and non-telomere-lengthening contributions of telomerase have only recently been described and their exact physiological implications are ill defined. Although the mechanism remains unclear, recent reports reveal that the catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), regulates levels of mitochondrial-derived reactive oxygen species (mtROS), independent of its established role in the nucleus. Telomerase inhibition has been the target of chemotherapy (directed or indirectly) for over a decade now, yet no telomerase inhibitor is FDA approved and few are currently in late-stage clinical trials, possibly due to underappreciation of the distinct extra-nuclear functions of telomerase. Moreover, evaluation of telomerase-specific therapies is largely limited to the context of chemotherapy, despite reports of the beneficial effects of telomerase activation in the cardiovascular system in relation to such processes as endothelial dysfunction and myocardial infarction. Thus, there is a need for better understanding of telomerase-focused cell and organism physiology, as well as development of telomerase-specific therapies in relation to cancer and extension of these therapies to cardiovascular pathologies. This review will detail findings related to telomerase and evaluate its potential to serve as a therapeutic target.


Assuntos
Antineoplásicos/uso terapêutico , Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Ativadores de Enzimas/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Neoplasias/tratamento farmacológico , Telomerase/antagonistas & inibidores , Animais , Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Ativação Enzimática , Humanos , Terapia de Alvo Molecular , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Telomerase/metabolismo , Homeostase do Telômero/efeitos dos fármacos , Encurtamento do Telômero/efeitos dos fármacos
5.
Int J Biochem Cell Biol ; 78: 288-296, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27474492

RESUMO

Lung cancer is a clinically difficult disease with rising disease burden around the world. Unfortunately, most lung cancers present at a clinically advanced stage. Of these cancers, many also present with brain metastasis which complicates the clinical picture. This review summarizes current knowledge on the molecular basis of lung cancer brain metastases. We start from the clinical perspective, aiming to provide a clinical context for a significant problem that requires much deeper scientific investigation. We review new research governing the metastatic process, including tumor cell signaling, establishment of a receptive tumor niches in the brain and evaluate potential new therapeutic options that take advantage of these new scientific advances. Lung cancer remains the largest single cause of cancer mortality in the United States (Siegel et al., 2015). This continues to be the clinical picture despite significant advances in therapy, including the advent of targeted molecular therapies and newly adopted immunotherapies for certain subtypes of lung cancer. In the vast majority of cases, lung cancer presents as advanced disease; in many instances, this advanced disease state is intimately associated with micro and macrometastatic disease (Goldberg et al., 2015). For both non-small cell lung cancer and small cell lung cancer patients, the predominant metastatic site is the brain, with up to 68% of patients with mediastinal lymph node metastasis eventually demonstrating brain metastasis (Wang et al., 2009).The frequency (incidence) of brain metastasis is highest in lung cancers, relative to other common epithelial malignancies (Schouten et al., 2002). Other studies have attempted to predict the risk of brain metastasis in the setting of previously non-metastatic disease. One of the largest studies to do this, analyzing historical data from 1973 to 2011 using the SEER database revealed a 9% risk of patients with previously non-metastatic NSCLC developing brain metastasis over the course of their disease, while 18% of small cell lung cancer patients without previous metastasis went on to develop brain metastasis as their disease progressed (Goncalves et al., 2016).The reasons underlying this predilection for the central nervous system, as well as the recent increase in the frequency of brain metastasis identified in patients remain important questions for both clinicians and basic scientists. More than ever, the question of how brain metastasis develop and how they can be treated and managed requires the involvement of interdisciplinary teams-and more importantly-scientists who are capable of thinking like clinicians and clinicians who are capable of thinking like scientists. This review aims to present a translational perspective on brain metastasis. We will investigate the scope of the problem of brain metastasis and the current management of the metastatic disease process in lung cancer. From this clinical starting point, we will investigate the literature surrounding the molecular underpinnings of lung tumor metastasis and seek to understand the process from a biological perspective to generate new hypotheses.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias Pulmonares/patologia , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Metabolismo Energético/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos , Pesquisa Translacional Biomédica
6.
Mol Carcinog ; 55(11): 1517-1525, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26346412

RESUMO

The ability to prevent disease is the holy grail of medicine. For decades, efforts have been made to extend the successes seen with vaccination against infectious diseases to cancer. In some instances, preventive vaccination against viruses (prototypically HPV) has successfully prevented tumorigenesis and will make a major impact on public health in the decades to come. However, the majority of cancers that arise are a result of genetic mutation within the host, or non-viral environmental exposures. We present compelling evidence that vaccination against an overexpressed self-tumor oncoprotein has the potential to prevent tumor development. Vaccination against the Epidermal Growth Factor Receptor (EGFR) using a multipeptide vaccine in a preventive setting decreased EGFR-driven lung carcinogenesis by 76.4% in a mouse model of EGFR-driven lung cancer. We also demonstrate that anti-EGFR vaccination primes the development of a robust immune response in vivo. This study provides proof of concept for the first time that targeting tumor drivers in a preventive setting in lung cancer using peptide vaccination can inhibit tumorigenesis and may provide useful clinical insights into the development of strategies to vaccinate against EGFR in populations where EGFR-mutant disease is highly prevalent. © 2015 Wiley Periodicals, Inc.


Assuntos
Vacinas Anticâncer/administração & dosagem , Receptores ErbB/genética , Neoplasias Pulmonares/prevenção & controle , Peptídeos/administração & dosagem , Animais , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Receptores ErbB/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Camundongos , Camundongos Transgênicos , Mutação , Peptídeos/uso terapêutico , Vacinação/métodos
7.
World Neurosurg ; 76(3-4): 270-5, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21986423

RESUMO

Induced pluripotent stem (iPS) cell technology has enormous potential to advance medical therapy by personalizing regenerative medicine and creating novel human disease models for research and therapeutic testing. Before this technology is broadly used in the clinic, we must realistically evaluate its disease modeling and therapeutic potential. Recent advances including the use of iPS cells to successfully model spinal muscular atrophy in vitro, as well as new techniques in generating iPS cells with recombinant proteins have accelerated the prospects of iPS cells for clinical use in regenerative therapy. This review explores the development and limitations of iPS cell technology, presents a critical comparison of iPS cells and embryonic stem cells, and discusses potential clinical applications and future research directions.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças do Sistema Nervoso/terapia , Transplante de Células-Tronco de Sangue Periférico , Medicina de Precisão/métodos , Anemia Falciforme/terapia , Animais , Engenharia Celular , Modelos Animais de Doenças , Humanos , Camundongos , Neurocirurgia , Doença de Parkinson/terapia , Ratos , Medicina Regenerativa
8.
Expert Opin Ther Targets ; 14(6): 621-32, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20426697

RESUMO

IMPORTANCE OF THE FIELD: Cancer is the second leading cause of death in the United States, and therefore remains a central focus of modern medical research. Accumulating evidence supports a 'cancer stem cell' (CSC) model - where cancer growth and/or recurrence is driven by a small subset of tumor cells that exhibit properties similar to stem cells. This model may provide a conceptual framework for developing more effective cancer therapies that target cells propelling cancer growth. AREAS COVERED IN THIS REVIEW: We review evidence supporting the CSC model and associated implications for understanding cancer biology and developing novel therapeutic strategies. Current controversies and unanswered questions of the CSC model are also discussed. WHAT THE READER WILL GAIN: This review aims to describe how the CSC model is key to developing novel treatments and discusses associated shortcomings and unanswered questions. TAKE HOME MESSAGE: A fresh look at cancer biology and treatment is needed for many incurable cancers to improve clinical prognosis for patients. The CSC model posits a hierarchy in cancer where only a subset of cells drive malignancy, and if features of this model are correct, has implications for development of novel and hopefully more successful approaches to cancer therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Animais , Antineoplásicos/farmacologia , Desenho de Fármacos , Humanos , Modelos Biológicos , Recidiva Local de Neoplasia , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Prognóstico
9.
Drugs ; 69(3): 241-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19275269

RESUMO

Despite the many overall advances in understanding cancer biology and therapeutic development in the last 50 years, most CNS malignancies are still clinically difficult, incurable diseases. Current combinations of aggressive surgical resection, radiation therapy and chemotherapy regimens do not significantly improve long-term patient survival for these cancers. Cancer immunotherapy is a potentially promising new therapeutic strategy that primes a patient's immune system to attack neoplastic cells. We review the preclinical and clinical progress in developing vaccination-based therapy for CNS malignancies to date, including peptide-based vaccinations, dendritic cell-based vaccinations and other potential modalities. Some of the challenges for developing an effective vaccination strategy, such as abnormal immune molecules on glioma cells and abnormal lymphocyte populations within a glioma, are also discussed.


Assuntos
Vacinas Anticâncer/uso terapêutico , Neoplasias do Sistema Nervoso Central/terapia , Animais , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Vacinas Anticâncer/imunologia , Neoplasias do Sistema Nervoso Central/imunologia , Ensaios Clínicos como Assunto , Células Dendríticas/imunologia , Proteínas de Choque Térmico/imunologia , Humanos , Imunoterapia/métodos , Vacinas de Subunidades Antigênicas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...