Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Planta ; 260(2): 43, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958760

RESUMO

MAIN CONCLUSION: Millets' protein studies are lagging behind those of major cereals. Current status and future insights into the investigation of millet proteins are discussed. Millets are important small-seeded cereals majorly grown and consumed by people in Asia and Africa and are considered crops of future food security. Although millets possess excellent climate resilience and nutrient supplementation properties, their research advancements have been lagging behind major cereals. Although considerable genomic resources have been developed in recent years, research on millet proteins and proteomes is currently limited, highlighting a need for further investigation in this area. This review provides the current status of protein research in millets and provides insights to understand protein responses for climate resilience and nutrient supplementation in millets. The reference proteome data is available for sorghum, foxtail millet, and proso millet to date; other millets, such as pearl millet, finger millet, barnyard millet, kodo millet, tef, and browntop millet, do not have any reference proteome data. Many studies were reported on stress-responsive protein identification in foxtail millet, with most studies on the identification of proteins under drought-stress conditions. Pearl millet has a few reports on protein identification under drought and saline stress. Finger millet is the only other millet to have a report on stress-responsive (drought) protein identification in the leaf. For protein localization studies, foxtail millet has a few reports. Sorghum has the highest number of 40 experimentally proven crystal structures, and other millets have fewer or no experimentally proven structures. Further proteomics studies will help dissect the specific proteins involved in climate resilience and nutrient supplementation and aid in breeding better crops to conserve food security.


Assuntos
Milhetes , Proteínas de Plantas , Milhetes/genética , Milhetes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteoma/metabolismo , Proteômica/métodos , Secas , Estresse Fisiológico , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Sorghum/metabolismo , Sorghum/genética
3.
Curr Protein Pept Sci ; 22(12): 873-889, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34751115

RESUMO

Programmed cell death (PCD) is a fundamental genetically controlled process in most organisms. PCD is responsible for the selective elimination of damaged or unwanted cells and organs to maintain cellular homeostasis during the organ's development under normal conditions as well as during defense or adaptation to stressful conditions. PCD pathways have been extensively studied in animals. In plants, studies focusing on understanding the pathways of PCD have advanced significantly. However, the knowledge about the molecular basis of PCD is still very limited. Some PCD pathways that have been discovered in animals are not present in plants or found with a similar form. PCD in plants is developmentally controlled (by endogenous factors) to function in organs development and differentiation as well as environmentally induced (by exogenous stimuli) to help the plant in surviving under stress conditions. Here, we present a review of the role of PCD in plant development and explore different examples of stress-induced PCD as well as highlight the main differences between the plant and animal PCD.


Assuntos
Apoptose , Plantas , Animais , Morte Celular , Homeostase , Desenvolvimento Vegetal/genética , Plantas/genética , Plantas/metabolismo
4.
J Exp Bot ; 69(20): 4971-4985, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30032264

RESUMO

Plant peroxisomes are important components of cellular antioxidant networks, dealing with ROS generated by multiple metabolic pathways. Peroxisomes respond to environmental and cellular conditions by changing their size, number, and proteomic content. To investigate the role of peroxisomes in response to drought, dehydration and ABA treatment we took an evolutionary and comparative genomics approach. Colonisation of land required evolution of dehydration tolerance in the absence of subsequent anatomical adaptations. Therefore, the model bryophyte Physcomitrella patens, the model dicot Arabidopsis thaliana and wheat (Tricitcum aestivum), a globally important cereal crop were compared. Three sets of genes namely 'PTS1 genes' (a proxy for genes encoding peroxisome targeted proteins), PEX genes (involved in peroxisome biogenesis) and genes involved in plant antioxidant networks were identified in all 3 species and their expression compared under drought (dehydration) and ABA treatment. Genes encoding enzymes of ß-oxidation and gluconeogenesis, antioxidant enzymes including catalase and glutathione reductase and PEX3 and PEX11 isoforms showed conserved up-regulation, and peroxisome proliferation was induced by ABA in moss. Interestingly, expression of some of these genes differed between drought sensitive and resistant genotypes of wheat in line with measured photosynthetic and biochemical differences. These results point to an underappreciated role for peroxisomes in drought response.


Assuntos
Arabidopsis/genética , Bryopsida/genética , Regulação da Expressão Gênica de Plantas/genética , Peroxissomos/metabolismo , Transcrição Gênica , Triticum/genética , Ácido Abscísico/metabolismo , Dessecação , Secas , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
J Adv Res ; 6(2): 179-88, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25750752

RESUMO

Physiological parameters and expression levels of drought related genes were analyzed in early vegetative stage of two bread wheat cultivars (Sids and Gmiza) differ in drought tolerance capacity. Both cultivars were imposed to gradual water depletion started on day 17 till day 32 after sowing. Sids, the more tolerant cultivar to drought showed higher fresh and dry weights than the drought sensitive genotype, Gmiza. Under water stress, Sids had higher membrane stability index (MSI), lower accumulated H2O2 and higher activity of the antioxidant enzymes; catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and superoxide dismutase (SOD) than Gmiza. On the other hand, the differential expression patterns of the genes dhn, wcor and dreb were observed due to water deficit intensity according to cultivar's tolerance to drought. The DNA sequence alignment of dun showed high similarity of about 80-92% identities with other related plants. The most striking overall observed trend was the highly induction in the expression of dun, wcor and dreb in leaves of the tolerant genotype, Sids under severe water stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...