Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharm Res ; 10(2): 233-8, 1993 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8456070

RESUMO

An empirical mass-transfer model for enteric-coating dissolution that uses in vivo dissolution data to characterize the pH-dependent solubility properties of the polymer film and a mass-transfer coefficient determined from in vivo dissolution or disintegration studies is developed. Once the in vivo mass-transfer coefficient has been evaluated, it can be used in conjunction with in vitro dissolution data from other formulations to predict the in vivo time to disintegration and onset of drug release. Results of in vitro dissolution experiments using the USP basket dissolution apparatus and in vivo disintegration experiments using gamma scintigraphy with four enteric-coated pellet formulations are presented. The good agreement among the in vivo mass-transfer coefficients that were determined supports the validity of the model.


Assuntos
Comprimidos com Revestimento Entérico , Adulto , Química Farmacêutica , Humanos , Concentração de Íons de Hidrogênio , Masculino , Pessoa de Meia-Idade , Solubilidade
2.
Proc Natl Acad Sci U S A ; 88(19): 8387-91, 1991 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-1924298

RESUMO

Phenylalanyl-tRNA synthetases [L-phenylalanine:tRNAPhe ligase (AMP-forming), EC 6.1.1.20] from Escherichia coli, yeast cytoplasm, and mammalian cytoplasm have an unusual conserved alpha 2 beta 2 quaternary structure that is shared by only one other aminoacyl-tRNA synthetase. Both subunits are required for activity. We show here that a single mitochondrial polypeptide from Saccharomyces cerevisiae is an active phenylalanyl-tRNA synthetase. This protein (the MSF1 gene product) is active as a monomer. It has all three characteristic sequence motifs of the class II aminoacyl-tRNA synthetases, and its activity may result from the recruitment of additional sequences into an alpha-subunit-like structure.


Assuntos
Fenilalanina-tRNA Ligase/genética , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Evolução Biológica , Análise Mutacional de DNA , Escherichia coli/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestrutura , Genes Fúngicos , Cinética , Mitocôndrias/enzimologia , Dados de Sequência Molecular , Oligonucleotídeos/química , Fenilalanina-tRNA Ligase/metabolismo , Fenilalanina-tRNA Ligase/ultraestrutura , Conformação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Mapeamento por Restrição , Alinhamento de Sequência , Relação Estrutura-Atividade , Especificidade por Substrato
3.
FEBS Lett ; 289(2): 217-20, 1991 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-1915850

RESUMO

Sequence comparisons among methionyl-tRNA synthetases from different organisms reveal only one block of homology beyond the last beta strand of the mononucleotide fold. We have introduced a series of semi-conservative amino acid replacements in the conserved motif of yeast methionyl-tRNA synthetase. The results indicate that replacements of two polar residues (Asn584 and Arg588) affected specifically the aminoacylation reaction. The location of these residues in the tertiary structure of the enzyme is compatible with a direct interaction of the amino acid side-chains with the tRNA anticodon.


Assuntos
Anticódon , Metionina tRNA Ligase/genética , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Escherichia coli/genética , Cinética , Metionina tRNA Ligase/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Plasmídeos , Conformação Proteica , Mapeamento por Restrição , Saccharomyces cerevisiae/genética , Homologia de Sequência do Ácido Nucleico
4.
FEBS Lett ; 290(1-2): 69-72, 1991 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-1915895

RESUMO

70S ribosomes from Thermus thermophilus are able to form ternary complexes with N-AcPhe-tRNAPhe from either Thermus thermophilus or Escherichia coli, in the presence of a short oligo(U) of six or nine uridines. A complex of N-AcPhe-tRNAPhe/(U)9/70S ribosome from Th. thermophilus was crystallized under the same conditions used for the growth of crystals from isolated ribosomes (S.D. Trakhanov, et al., (1987) FEBS Lett. 220, 319-322).


Assuntos
RNA de Transferência de Fenilalanina/ultraestrutura , Ribossomos/ultraestrutura , Thermus thermophilus/ultraestrutura , Cristalografia , Substâncias Macromoleculares , Biossíntese de Proteínas , RNA Mensageiro/ultraestrutura
5.
Anal Biochem ; 196(1): 156-60, 1991 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-1888029

RESUMO

When the primer extension of a synthetic oligonucleotide hybridized to a complementary region of RNA is made in the presence of only three deoxyribonucleosides triphosphates, elongation of the primer stops as soon as the missing nucleotide is needed. This abortive primer extension assay has been adapted to analyse tRNA gene transcripts and has two main advantages. First it is specific and allows the identification of particular tRNA gene products in an homologous system provided the gene bears a point mutation. Second, it is highly sensitive and can be used to complement and confirm results of Northern blot hybridization. This assay should be a useful tool in the further in vivo study of the transcription and processing of particular tRNA genes in the homologous system. In this report the expression of wild-type and mutant yeast Sup4- tyrosine inserting suppressor gene was studied.


Assuntos
Mutação , RNA de Transferência/análise , Saccharomyces cerevisiae/genética , Sequência de Bases , Expressão Gênica , Genes Fúngicos , Genes Supressores , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Fúngico , RNA de Transferência/genética , RNA de Transferência/metabolismo , Moldes Genéticos , Transcrição Gênica , Tirosina
6.
Biochimie ; 73(7-8): 991-1000, 1991.
Artigo em Inglês | MEDLINE | ID: mdl-1720674

RESUMO

The specific effect of the binding of initiation factor IF2 on E coli 16S rRNA within the [IF2/30S/GTP] complex has been probed by crosslinking experiment with trans-diamminedichloro platinum (II) and by phosphate alkylation with ethylnitrosourea. Several 16S rRNA fragments crosslinked to IF2 have been identified and are mostly located in the head and the lateral protrusion of the 30S subunit. The study of the effect of IF2 binding to the 30S subunit reveals that the factor does not tightly bind to the 16S rRNA and induces both isolated reductions and enhancements of phosphate reactivity in the 16S rRNA. Several of them are located near the binding site of IF2 and weak effects are observed in distant parts of the subunit. These results are discussed in the light of current knowledge of the topographical localization of IF2 with the 30S subunit and of its relation with function.


Assuntos
Escherichia coli/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Ribossomos/metabolismo , Sequência de Bases , Sítios de Ligação , Cisplatino , Reagentes de Ligações Cruzadas , Escherichia coli/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fator de Iniciação 2 em Procariotos , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
7.
Biochemistry ; 30(9): 2448-53, 1991 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-1900433

RESUMO

Modified lysines resulting from the cross-linking of the 3' end of tRNA(Phe) to yeast phenylalanyl-tRNA synthetase (an enzyme with an alpha 2 beta 2 structure) have been characterized by sequencing the labeled chymotryptic peptides that were isolated by means of gel filtration and reversed-phase chromatography. The analysis showed that Lys131 and Lys436 in the alpha subunit are the target sites of periodate-oxidized tRNA(Phe). Mutant protein with a Lys----Asn substitution established that each lysine contributes to the binding of the tRNA but is not essential for catalysis. The major labeled lysine (K131) belongs to the sequence IALQDKL (residues 126-132), which shares three identities with the peptide sequence ADKL found around the tRNAox-labeled Lys61 in the large subunit of Escherichia coli phenylalanyl-tRNA synthetase [Hountondji, C., Schmitter, J. M., Beauvallet, C., & Blanquet, S. (1987) Biochemistry 26, 5433-5439].


Assuntos
Escherichia coli/enzimologia , Fenilalanina-tRNA Ligase/metabolismo , RNA de Transferência de Fenilalanina/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Asparagina , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Escherichia coli/genética , Cinética , Lisina , Substâncias Macromoleculares , Mutagênese Sítio-Dirigida , Oxirredução , Fragmentos de Peptídeos/isolamento & purificação , Fenilalanina-tRNA Ligase/genética , Saccharomyces cerevisiae/genética
8.
J Mol Biol ; 216(2): 299-310, 1990 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-2254931

RESUMO

Escherichia coli threonyl-tRNA synthetase binds to the leader region of its own mRNA at two major sites: the first shares some analogy with the anticodon arm of several tRNA(Thr) isoacceptors and the second corresponds to a stable stem-loop structure upstream from the first one. The binding of the enzyme to its mRNA target site represses its translation by preventing the ribosome from binding to its attachment site. The enzyme is still able to bind to derepressed mRNA mutants resulting from single substitutions in the anticodon-like arm. This binding is restricted to the stem-loop structure of the second site. However, the interaction of the enzyme with this site fails to occlude ribosome binding. tRNA(Thr) is able to displace the wild-type mRNA from the enzyme at both sites and suppresses the inhibitory effect of the synthetase on the formation of the translational initiation complex. Our results show that tRNA(Thr) acts as an antirepressor on the synthesis of its cognate aminoacyl-tRNA synthetase. This repression/derepression double control allows precise adjustment of the rate of synthesis of threonyl-tRNA synthetase to the tRNA level in the cell.


Assuntos
Escherichia coli/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/metabolismo , RNA de Transferência de Treonina/metabolismo , Ribossomos/metabolismo , Treonina-tRNA Ligase/metabolismo , Anticódon/metabolismo , Composição de Bases , Sequência de Bases , Escherichia coli/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Mapeamento de Nucleotídeos , RNA Mensageiro/genética , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica
9.
Biochimie ; 72(10): 735-43, 1990 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-2078590

RESUMO

A synthetic gene of yeast aspartic acid tRNA with a promoter for phage T7 RNA polymerase was cloned in Escherichia coli. The in vitro transcribed tRNA(Asp) molecules are deprived of modified nucleotides and retain their aspartylation capacity. The solution conformation of these molecules was mapped with chemical structural probes and compared to that of fully modified molecules. Significant differences in reactivities were observed in Pb2+ cleavage of the RNAs and in modification of the bases with dimethyl sulphate. The most striking result concerns C56, which becomes reactive in unmodified tRNA(Asp), indicating the disruption of the C56-G19 base pair involved in the D- and T-loop interaction. The chemical data indicate that unmodified tRNA(Asp) transcripts possess a relaxed conformation compared to that of the native tRNA. This conclusion is confirmed by thermal melting experiments. Thus it can be proposed that post-transcriptional modifications of nucleotides in tRNA stabilize the biologically active conformations in these molecules.


Assuntos
Genes Sintéticos , Processamento Pós-Transcricional do RNA/fisiologia , RNA de Transferência de Ácido Aspártico/química , Saccharomyces cerevisiae/genética , Sequência de Bases , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Sondas RNA , RNA de Transferência de Ácido Aspártico/metabolismo , Temperatura , Transcrição Gênica
10.
Biochemistry ; 29(35): 8144-51, 1990 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-1702020

RESUMO

The specific effect of the binding of IF2 and initiator fMET-tRNA(fMet) on Escherichia coli 16S rRNA has been probed by phosphate alkylation with ethylnitrosourea. The results show that IF2 does not significantly shield portions of 16S rRNA but induces both reductions and enhancements of reactivity scattered in the entire molecule. Most of them are topographically constrained in a region corresponding to the cleft, the lateral protrusion, and the part of the head facing the protrusion (positions 694, 771, 791, 1225, 1268, 1398, 1401, 1504, and 1527). Weak effects are also observed in distant parts of the subunit (positions 301, 302, 492, and 1428). All the reactivity changes induced by the binding of IF2 are still observed in the presence of the initiator tRNA and AUG as messenger. The additional changes induced by the tRNA are mostly centered around the cleft-head-lateral protrusion region, near positions affected by IF2 binding. Most of the changes correspond to reduced reactivities (positions 791, 1222, 1263, 1393, 1395, 1430, 1431, 1504, 1528, and 1529), while enhanced reactivities are observed at positions 708, 709, and 1398. Functional implications are discussed, which stress the dynamic properties of the ribosome.


Assuntos
Escherichia coli/metabolismo , Iniciação Traducional da Cadeia Peptídica , Fatores de Iniciação de Peptídeos/metabolismo , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/metabolismo , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência de Metionina/metabolismo , Ribossomos/metabolismo , Regulação Alostérica , Sítios de Ligação , Conformação de Ácido Nucleico , Fator de Iniciação 2 em Procariotos , RNA Bacteriano/ultraestrutura , RNA Ribossômico 16S/química
11.
Pharm Res ; 7(8): 848-51, 1990 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-2235881

RESUMO

We have developed a method for quantifying the absorption of model fluorescent latex particles from the mouse small intestine into Peyer's patches, mesenteric lymph nodes, and spleen. The procedure combines a simple and exhaustive particle recovery technique with a highly sensitive particle counting technique. Mice were orally gavaged with fluorescent polystyrene latex suspensions, and at various time points Peyer's patches, normal absorptive small intestinal tissue, mesenteric lymph nodes, and spleen were collected. The tissue samples were solubilized using an aqueous potassium hydroxide and surfactant solution and particles were counted using a flow cytometer. Using this method we were able to detect and quantify small numbers of particles, measure the course of uptake and clearance, and determine the tissue distribution of absorbed particles. Data generated using this technique indicate that particle absorption depends on the dose level, particle size, and fed state of the animals.


Assuntos
Absorção Intestinal , Intestino Delgado/metabolismo , Animais , Feminino , Técnicas In Vitro , Linfonodos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Nódulos Linfáticos Agregados/metabolismo , Baço/metabolismo
12.
Biochim Biophys Acta ; 1050(1-3): 179-85, 1990 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-2207141

RESUMO

Comparative structural and functional results on the valine and tyrosine accepting tRNA-like molecules from turnip yellow mosaic virus (TYMV) and brome mosaic virus (BMV), and the corresponding cognate yeast tRNAs are presented. Novel experiments on TYMV RNA include design of variant genes of the tRNA-like domain and their transcription in vitro by T7 RNA polymerase, analysis of their valylation catalyzed by yeast valyl-tRNA synthetase, and structural mapping with dimethyl sulfate and carbodiimide combined with graphical modelling. Particular emphasis is given to conformational effects affecting the valylation capacity of the TYMV tRNA-like molecule (e.g., the effect of the U43----C43 mutation). The contacts of the TYMV and BMV RNAs with valyl- and tyrosyl-tRNA synthetases are compared with the positions in the molecules affecting their aminoacylation capacities. Finally, the involvement of the putative valine and tyrosine anticodons in the tRNA-like valylation and tyrosylation reactions is discussed. While an anticodon-like sequence participates in the valine identity of TYMV RNA, this seems not to be the case for the tyrosine identity of BMV RNA despite the fact that the tyrosine anticodon has been shown to be involved in the tyrosylation of canonical tRNA.


Assuntos
Vírus do Mosaico/genética , RNA de Transferência/metabolismo , RNA Viral/metabolismo , Saccharomyces cerevisiae/genética , Anticódon , Sequência de Bases , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Aminoacil-RNA de Transferência/metabolismo
13.
Biochim Biophys Acta ; 1050(1-3): 328-36, 1990 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-2207162

RESUMO

The expression of ribosomal protein S15 is shown to be translationally and negatively autocontrolled using a fusion within a reporter gene. Isolation and characterization of several deregulated mutants indicate that the regulatory site (the translational operator site) overlaps the ribosome loading site of the S15 messenger. In this region, three domains, each exhibiting a stem-loop structure, were determined using chemical and enzymatic probes. The most downstream hairpin carries the Shine-Dalgarno sequence and the initiation codon. Genetic and structural data derived from mutants constructed by site-directed mutagenesis show that the operator is a dynamic structure, two domains of which can form a pseudoknot. Binding of S15 to these two domains suggests that the pseudoknot could be stabilized by S15. A model is presented in which two alternative structures would explain the molecular basis of the S15 autocontrol.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Biossíntese de Proteínas , RNA Mensageiro/genética , Proteínas Ribossômicas/genética , Sequência de Bases , Deleção Cromossômica , Colífagos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Óperon , Plasmídeos , RNA Mensageiro/isolamento & purificação , Mapeamento por Restrição , Proteínas Ribossômicas/biossíntese , Transcrição Gênica
14.
Biochim Biophys Acta ; 1050(1-3): 343-50, 1990 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-2207165

RESUMO

The E. coli threonyl-tRNA synthetase gene is negatively autoregulated at the translational level by a direct binding of the enzyme to the leader region of the thrS mRNA. This region folds in four well-defined domains. The enzyme binds to the leader at two major sites: the first is a stem-loop structure located in domain II upstream of the translational initiation site (domain I) which shares structural analogies with the anticodon arm of several tRNA(Thr) isoacceptors. The second site corresponds to a stable stem-loop structure located in domain IV. Both sites are separated by a large unpaired region (domain III). In vivo and in vitro experiments show that the structural integrity of both sites is required for the regulatory process. The binding of the enzyme to its mRNA target site represses its translation by preventing the ribosome from binding to its attachment site. tRNA(Thr) suppresses this inhibitory effect by displacing the mRNA from the enzyme at both the upstream stem-loop structure and the tRNA-like anticodon arm.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Genes Bacterianos , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA de Transferência de Treonina/metabolismo , Ribossomos/metabolismo , Treonina-tRNA Ligase/genética , Anticódon/genética , Sequência de Bases , Escherichia coli/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , RNA de Transferência de Treonina/genética
15.
Biochim Biophys Acta ; 1050(1-3): 84-92, 1990 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-2207173

RESUMO

The conformation of the E. coli initiator tRNA and of the 16S rRNA at different steps leading to the 30S.IF2.fMet-ARN(fMet).AUG.GTP complex has been investigated using several structure-specific probes. As compared to elongator tRNA, the initiator tRNA exhibits specific structural features in the anticodon arm, the T and D loops and the acceptor arm. Initiation factor 2 (IF2) interacts with the T-loop and the minor groove of the T stem of the RNA, and induces an increased flexibility in the anticodon arm. In the 30S initiation complex, additional protection is observed in the acceptor stem and in the anticodon arm of the tRNA. Within the 30S subunit, IF2 does not significantly shield defined portions of 16S rRNA, but induces both reduction and enhancement of reactivity scattered in the entire molecule. Most are constrained in a region corresponding to the cleft, the lateral protrusion and the part of the head facing the protrusion. All the reactivity changes induced by the binding of IF2 are still observed in the presence of the initiator tRNA and AUG message. The additional changes induced by the tRNA are mostly centered around the cleft-head-lateral protrusion region, near positions affected by IF2 binding.


Assuntos
Escherichia coli/genética , Iniciação Traducional da Cadeia Peptídica , RNA Ribossômico 16S/genética , Aminoacil-RNA de Transferência/genética , RNA de Transferência de Metionina , Ribossomos/metabolismo , Sequência de Bases , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fatores de Iniciação de Peptídeos/metabolismo , Fator de Iniciação 2 em Procariotos , RNA Ribossômico 16S/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/ultraestrutura
16.
Biochimie ; 72(8): 537-44, 1990 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-2126459

RESUMO

Yeast methionyl-tRNA synthetase has a long N-terminal extension fused to the mononucleotide binding fold that occurs at the N-terminal end of the homologous E coli enzyme. We examined the contribution of this polypeptide region to the activity of the enzyme by creating several internal deletions in MESI which preserve the correct reading frame. The results show that 185 amino acids are dispensable for activity and stability. Removal of the next 5 residues affects the activity of the enzyme. The effect is more pronounced on the tRNA amino-acylation steps than on the adenylate formation step. The Km for ATP and methionine are unaltered, indicating that the global structure of the enzyme is maintained. The Km for tRNA increased slightly by a factor of 3, which indicates that the positioning of the tRNA on the surface of the molecule is not affected. There is, however, a great effect on the Vmax of the enzyme. Examination of the 3-D structure of the homologous E coli methionyl-tRNA synthetase indicates that the amino acid region preceding the mononucleotide binding fold does not participate directly in the catalytic cleft. It could, however, act at a distance by propagating a mutational alteration of the catalytic residues. The tRNA(Met) anticodon binding region of the E coli enzyme has recently been characterized. By mutagenesis of the topologically equivalent region in the yeast enzyme, we could identify residues that alter specifically the aminoacylation of the tRNA. Leu 658 provides a van der Waals contact that is critical for the recognition of the yeast tRNA.


Assuntos
Anticódon/metabolismo , Metionina tRNA Ligase/genética , RNA de Transferência/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Anticódon/química , Escherichia coli/enzimologia , Cinética , Metionina/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , RNA de Transferência/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Leveduras/enzimologia
17.
Nucleic Acids Res ; 18(13): 3803-11, 1990 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-2374709

RESUMO

The solution structure of human U1 snRNA was investigated by using base-specific chemical probes (dimethylsulfate, carbodiimide, diethylpyrocarbonate) and RNase V1. Chemical reagents were employed under various conditions of salt and temperature and allowed information at the Watson-Crick base-pairing positions to be obtained for 66% of the U1 snRNA bases. Double-stranded or stacked regions were examined with RNase V1. The dat gained from these experiments extend and support the previous 2D model for U1snRNA. However, to elucidate some aspects of the solution data that could not be accounted for by the secondary structure model, the information gathered from structure probing was used to provide the experimental basis required to construct and to test a tertiary structure model by computer graphics modeling. As a result, U1 snRNA is shown to adopt an asymmetrical X-shape that is formed by two helical domains, each one being generated by coaxial stacking of helices at the U1 snRNA cruciform. Chemical reactivities and model building show that a few nucleotides, previously proposed to be unpaired, can form A.G and U.U non Watson-Crick base-pairs, notably in stem-loop B. The structural model we propose for regions G12 to A124 integrates stereochemical constraints and is based both on solution structure data and sequence comparisons between U1 snRNAs.


Assuntos
RNA Nuclear Pequeno/genética , Alquilantes , Composição de Bases , Sequência de Bases , Carbodi-Imidas/farmacologia , Dietil Pirocarbonato/farmacologia , Células HeLa , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Conformação de Ácido Nucleico , RNA Nuclear Pequeno/análise , Ribonucleases/metabolismo , Soluções , Ésteres do Ácido Sulfúrico/farmacologia
18.
Biochimie ; 72(6-7): 453-61, 1990.
Artigo em Inglês | MEDLINE | ID: mdl-2124148

RESUMO

This report presents the conceptual and methodological framework that presently underlies the experiments designed to decipher the structural features in tRNA important for its aminoacylation by aminoacyl-tRNA synthetases. It emphasizes the importance of conformational features in tRNA for an optimized aminoacylation. This is illustrated by selected examples on yeast tRNA(Asp). Using the phage T7 transcriptional system, a series of tRNA(Asp) variants were created in which conformational elements were modified. It is shown that aspartyl-tRNA synthetase tolerates conformational variability in tRNA(Asp) at the level of the D-loop and variable region, of the tertiary Levitt base-pair 15-48 which can be inverted and in the T-arm in which residue 49 can be excised. However, changing the anticodon region completely abolishes the aspartylation capacity of the variants. Transplanting the phenylalanine identity elements into a different tRNA(Asp) variant presenting conformational characteristics of tRNA(Phe) converts this molecule into a phenylalanine acceptor but is less efficient than wild-type tRNA(Phe). This engineered tRNA completely loses its aspartylation capacity, showing that some aspartic acid and phenylalanine identity determinants overlap. The fact that chimeric tRNA(Asp) molecules with altered anticodon regions lose their aspartylation capacity demonstrates that this region is part of the aspartic acid identity of tRNA(Asp).


Assuntos
RNA de Transferência de Ácido Aspártico/metabolismo , Saccharomyces cerevisiae/metabolismo , Aspartato-tRNA Ligase/metabolismo , Sequência de Bases , Sítios de Ligação , Engenharia Genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA de Transferência de Ácido Aspártico/química , RNA de Transferência de Ácido Aspártico/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica
19.
Biochimie ; 72(6-7): 485-94, 1990.
Artigo em Inglês | MEDLINE | ID: mdl-1701663

RESUMO

The expression of the gene for threonyl-tRNA synthetase (thrS) has previously been shown as being negatively autoregulated at the translational level. The region of the thrS leader mRNA responsible for that control is located immediately upstream of the ribosomal binding site, and was proposed to fold in a tRNA(Thr) anticodon arm-like structure. The present paper reviews experiments using enzymatic and chemical probes that prove the existence of a tRNA(Thr) anticodon-like structure in the thrS mRNA. These structural studies have also shown the presence of another arm upstream in the leader mRNA that has striking similarities with the acceptor arm of the tRNA(Thr) isoacceptors. This second arm was shown, by mutational analysis, to also be involved in thrS regulation. Footprinting experiments have shown that both the anticodon-like and the acceptor-like arms interact with the synthetase. Finally, the similarity of the interaction of the synthetase with its 2 RNA ligands (mRNA and tRNA) has been investigated by selecting and studying mutants of the synthetase itself. The observed correlation between regulatory and aminoacylation defects in these mutants strongly suggests that the synthetase recognizes similar regions of its 2 RNA ligands in an analogous manner.


Assuntos
Escherichia coli/enzimologia , Treonina-tRNA Ligase/metabolismo , Sequência de Bases , Sítios de Ligação , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Treonina-tRNA Ligase/genética
20.
Nature ; 344(6268): 787-9, 1990 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-2330033

RESUMO

The molecular recognition of specific transfer RNAs by the appropriate aminoacyl-tRNA synthetase is an important step in determining the accuracy of translation of the genetic message from nucleic acids into proteins. Recent studies using variant tRNAs with specific sequence modifications have indicated particular regions that determine their identity. Here we consider whether the base modifications commonly found in tRNAs contribute to their identity. Although unmodified tRNA(Asp) is charged with aspartate as efficiently as the modified native tRNA, it is mischarged with arginine with considerably increased efficiency. Our results indicate that post-transcriptional modification of tRNAs introduces structural 'anti-determinants', restricting the efficiency with which the tRNAs are charged with inappropriate amino acids.


Assuntos
Arginina/metabolismo , Ácido Aspártico/metabolismo , RNA Fúngico/metabolismo , RNA de Transferência Aminoácido-Específico/metabolismo , RNA de Transferência de Ácido Aspártico/metabolismo , Arginina-tRNA Ligase/metabolismo , Aspartato-tRNA Ligase/metabolismo , Sequência de Bases , Cinética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Fúngico/genética , RNA de Transferência de Arginina , RNA de Transferência de Ácido Aspártico/genética , Relação Estrutura-Atividade , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...