Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 915: 170089, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38224896

RESUMO

Wetlands cycle carbon by being net sinks for carbon dioxide (CO2) and net sources of methane (CH4). Daily and seasonal temporal patterns, dissolved oxygen (DO) availability, inundation status (flooded or dry/partially flooded), water depth, and vegetation can affect the magnitude of carbon uptake or emissions, but the extent and interactive effects of these variables on carbon gas fluxes are poorly understood. We characterized the linkages between carbon fluxes and these environmental and temporal drivers at the Old Woman Creek National Estuarine Research Reserve (OWC), OH. We measured diurnal gas flux patterns in an upstream side channel (called the cove) using chamber measurements at six sites (three vegetated and three non-vegetated). We sampled hourly from 7 AM to 7 PM and monthly from July to October 2022. DO concentrations and water levels were measured monthly. Water inundation status had the most influential effect on carbon fluxes with flooded conditions supporting higher CH4 fluxes (0.39 µmol CH4 m-2 s-1; -1.23 µmol CO2 m-2 s-1) and drier conditions supporting higher CO2 fluxes (0.03 µmol CH4 m-2 s-1; 0.86 µmol CO2 m-2 s-1). When flooded, the wetland was a net CO2 sink; however, it became a source for both CH4 and CO2 when water levels were low. We compared chamber-based gas fluxes from the cove in flooded (July) and dry (August) months to fluxes measured with an eddy covariance tower whose footprint covers flooded portions of the wetland. The diurnal pattern of carbon fluxes at the tower did not vary with changing water levels but remained a CO2 sink and a CH4 source even when the cove where we performed the chamber measurements dried out. These results emphasize the role of inundation status on wetland carbon cycling and highlight the importance of fluctuating hydrologic patterns, especially hydrologic drawdowns, under changing climatic conditions.

2.
Biotechniques ; 68(1): 7-13, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31718252

RESUMO

Rapidly assaying cell viability for diverse bacteria species is not always straightforward. In eukaryotes, cell viability is often determined using colorimetric dyes; however, such dyes have not been identified for bacteria. We screened different dyes and found that erythrosin B (EB), a visibly red dye with fluorescent properties, functions as a vital dye for many Gram-positive and -negative bacteria. EB worked at a similar concentration for all bacteria studied and incubations were as short as 5 min. Given EB's spectral properties, diverse experimental approaches are possible to rapidly visualize and/or quantitate dead bacterial cells in a population. As the first broadly applicable colorimetric viability dye for bacteria, EB provides a cost-effective alternative for researchers in academia and industry.


Assuntos
Bactérias/química , Técnicas Bacteriológicas/métodos , Eritrosina/química , Corantes Fluorescentes/química , Membrana Celular/química , Colorimetria , Citometria de Fluxo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...