Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Psychophysiol ; 168: 33-42, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34391820

RESUMO

We present a single case who can change pupil size on command with dilation of pupil diameter of around 0.8 mm, and constriction of around 2.4 mm. Using modern pupillometric and optometric techniques in combination with measuring electrodermal activity, various indirect mechanisms possibly mediating this phenomenon were tested: accommodation, brightness, increases in arousal by increased mental effort. None of these behavioral tests could support an indirect strategy as the mode of action, although it seems plausible that the case could have learned to gain control over the pupillary response by decoupling pupil size changes from accommodation and vergence in the near triad: Even at maximal accommodation, the case voluntarily constricted his pupil without changing vergence and could improve visual acuity by >6 diopters. Using task-based functional magnetic resonance imaging we found involvement of brain regions generating and mediating volitional impulses. Changes of the left pupil size were associated with increased activation of parts of the left dorsolateral prefrontal cortex, adjacent premotor areas, and supplementary motor area. It still remains open where these neural signals enter the final pathway, either innervating the pupil's dilator directly, or more indirectly by inhibiting the parasympathetically innervated antagonistic sphincter, and vice versa for constriction. To conclude, so far none of potential - conscious or unconscious - indirect strategies, may it be accommodative or vergence efforts or mental efforts and imaginations, could be observed or inferred to be fully responsible, suggesting direct voluntary control of pupil size in the present case.


Assuntos
Optometria , Pupila , Constrição , Dilatação , Humanos , Imageamento por Ressonância Magnética , Percepção
2.
Brain Sci ; 10(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872282

RESUMO

Depth needs to be considered to understand visual information processing in cluttered environments in the wild. Since differences in depth depend on current gaze position, eye movements were avoided by short presentations in a real depth setup. Thus, allowing only peripheral vision, crowding was tested. That is, the impairment of peripheral target recognition by the presence of nearby flankers was measured. Real depth was presented by a half-transparent mirror that aligned the displays of two orthogonally arranged, distance-adjustable screens. Fixation depth was at a distance of 190 cm, defocused depth planes were presented either near or far, in front of or behind the fixation depth, all within the depth of field. In Experiments 1 and 2, flankers were presented defocused, while the to-be-identified targets were on the fixation depth plane. In Experiments 3-5, targets were presented defocused, while the flankers were kept on the fixation depth plane. Results for defocused flankers indicate increased crowding effects with increased flanker distance from the target at focus (near to far). However, for defocused targets, crowding for targets in front of the focus as compared to behind was increased. Thus, defocused targets produce decreased crowding with increased target distance from the observer. To conclude, the effects of flankers in depth seem to be centered around fixation, while effects of target depth seem to be observer-centered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...