Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Dev Disabil ; 72: 284-296, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26898317

RESUMO

We present two experiments examining the universality and uniqueness of reduced context sensitivity in language processing in Autism Spectrum Disorders (ASD), as proposed by the Weak Central Coherence account (Happé & Frith, 2006, Journal of Autism and Developmental Disorders, 36(1), 25). That is, do all children with ASD exhibit decreased context sensitivity, and is this characteristic specific to ASD versus other neurodevelopmental conditions? Experiment 1, conducted in English, was a comparison of children with ASD with normal language and their typically-developing peers on a picture selection task where interpretation of sentential context was required to identify homonyms. Contrary to the predictions of Weak Central Coherence, the ASD-normal language group exhibited no difficulty on this task. Experiment 2, conducted in German, compared children with ASD with variable language abilities, typically-developing children, and a second control group of children with Language Impairment (LI) on a sentence completion task where a context sentence had to be considered to produce the continuation of an ambiguous sentence fragment. Both ASD-variable language and LI groups exhibited reduced context sensitivity and did not differ from each other. Finally, to directly test which factors contribute to reduced context sensitivity, we conducted a regression analysis for each experiment, entering nonverbal IQ, structural language ability, and autism diagnosis as predictors. For both experiments structural language ability emerged as the only significant predictor. These convergent findings demonstrate that reduced sensitivity to context in language processing is linked to low structural language rather than ASD diagnosis.


Assuntos
Aptidão , Transtorno do Espectro Autista , Compreensão , Transtornos da Linguagem/diagnóstico , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/psicologia , Criança , Feminino , Humanos , Idioma , Testes de Linguagem , Masculino
2.
J Immunol ; 185(1): 488-97, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20525895

RESUMO

Virulent varicella-zoster virus (VZV) can spread in immunocompetent humans, resulting in symptoms mostly of the skin. In contrast, vaccine Oka (V-Oka), the attenuated VZV vaccine strain, only rarely causes clinical reactions. The mechanisms underlying these pathogenetic differences are unclear. In this study, we comparatively analyzed the ability of virulent VZV and V-Oka to modulate instruction of dendritic cells (DCs) by innate signals. DCs isolated from normal human skin were susceptible to infection with VZV and V-Oka. Moreover, inflammatory DCs, which play a crucial role in the stimulation of Th1 immune responses, accumulated in herpes zoster lesions. Infection of inflammatory DCs generated in vitro with virulent VZV or V-Oka resulted in upregulation of CD1c. Upon coculture with CD1c-restricted innate cells, DCs developed a mature phenotype whether infected with virulent VZV or V-Oka. Intriguingly, a striking difference was detected on the functional level. The release of IFN-gamma and IL-12, the signature cytokines of Th1 responses, was enhanced by V-Oka but blocked by virulent VZV. V-Oka and virulent VZV efficiently synergized with CD40L, eliminating the possibility that CD40 signaling was a target of VZV-associated immune evasion. Instead, virulent VZV selectively interfered with signaling through TLR2, which is known to sense VZV. Thus, virulent VZV subverts Th1-promoting instruction of human DCs by blocking TLR2-mediated innate signals that prime IL-12 production by DCs. Taken together, our results demonstrate a novel immune-evasion mechanism of virulent VZV that has been lost during the attenuation process leading to the VZV vaccine strain.


Assuntos
Vacina contra Varicela/imunologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Herpesvirus Humano 3/imunologia , Herpesvirus Humano 3/patogenicidade , Vacinas contra Herpesvirus/imunologia , Transdução de Sinais/imunologia , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/citologia , Herpes Zoster/imunologia , Herpes Zoster/virologia , Herpesvirus Humano 3/isolamento & purificação , Humanos , Evasão da Resposta Imune/imunologia , Interleucina-12/biossíntese , Pessoa de Meia-Idade , Monócitos/citologia , Monócitos/imunologia , Monócitos/virologia , Células Th1/imunologia , Células Th1/virologia , Vacinas Atenuadas/imunologia , Virulência
3.
Curr Biol ; 20(8): 738-43, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20381352

RESUMO

Vertebrate laterality, which is manifested by asymmetrically placed organs [1], depends on asymmetric activation of the Nodal signaling cascade in the left lateral plate mesoderm [2]. In fish, amphibians, and mammals, a cilia-driven leftward flow of extracellular fluid acts upstream of the Nodal cascade [3-6]. The direct target of flow has remained elusive. In Xenopus, flow occurs at the gastrocoel roof plate (GRP) in the dorsal midline of the embryo [4, 7]. The GRP is bordered by a second, bilaterally symmetrical Nodal expression domain [8]. Here we identify the Nodal inhibitor Coco as a critical target of flow. Coco and Xenopus Nodal-related 1 (Xnr1) are coexpressed in the lateralmost ciliated GRP cells. Coco becomes downregulated on the left side of the GRP as a direct readout of flow. Ablation of flow prevented Coco repression, whereas Xnr1 expression was independent of flow. Loss of flow-induced laterality defects were rescued by knockdown of Coco on the left side. Parallel knockdown of Coco and Xnr1 in GRP cells restored laterality defects in flow-impaired embryos, demonstrating that Coco acted through GRP-expressed Xnr1. Coco thus acts as a critical target of flow, suggesting that symmetry is broken by flow-mediated left-asymmetric release of Nodal repression at the midline.


Assuntos
Morfogênese/fisiologia , Proteína Nodal/antagonistas & inibidores , Proteínas de Xenopus/metabolismo , Xenopus laevis/anatomia & histologia , Xenopus laevis/embriologia , Animais , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Indução Embrionária , Proteína Nodal/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Xenopus/genética
4.
Dev Biol ; 331(2): 281-91, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19450574

RESUMO

Leftward flow of extracellular fluid breaks the bilateral symmetry of most vertebrate embryos, manifested by the ensuing asymmetric induction of Nodal signaling in the left lateral plate mesoderm (LPM). Flow is generated by rotational beating of polarized monocilia at the posterior notochord (PNC; mammals), Kupffer's vesicle (KV; teleost fish) and the gastrocoel roof plate (GRP; amphibians). To manipulate flow in a defined way we cloned dynein heavy chain genes dnah5, 9 and 11 in Xenopus. dnah9 expression was closely related to motile cilia from neurulation onwards. Morphant tadpoles showed impaired epidermal ciliary beating. Leftward flow at the GRP was absent, resulting in embryos with loss of asymmetric marker gene expression. Remarkably, unilateral knockdown on the right side of the GRP did not affect laterality, while left-sided ablation of flow abolished marker gene expression. Thus, flow was required exclusively on the left side of the GRP to break symmetry in the frog. Our data suggest that the substrate of flow is generated within the GRP and not at its margin, disqualifying Nodal as a candidate morphogen.


Assuntos
Líquido Extracelular/fisiologia , Fatores de Determinação Direita-Esquerda/fisiologia , Mesoderma/fisiologia , Proteínas de Xenopus/fisiologia , Xenopus laevis/embriologia , Animais , Padronização Corporal/fisiologia , Cílios/fisiologia , Técnicas de Silenciamento de Genes , Larva , Mesoderma/embriologia , Mesoderma/crescimento & desenvolvimento , Notocorda/embriologia , Notocorda/crescimento & desenvolvimento , Notocorda/fisiologia , Proteínas de Xenopus/genética , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...