Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 9(4): 1451-6, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19351191

RESUMO

Instrumental drift in atomic force microscopy (AFM) remains a critical, largely unaddressed issue that limits tip-sample stability, registration, and the signal-to-noise ratio during imaging. By scattering a laser off the apex of a commercial AFM tip, we locally measured and thereby actively controlled its three-dimensional position above a sample surface to <40 pm (Deltaf = 0.01-10 Hz) in air at room temperature. With this enhanced stability, we overcame the traditional need to scan rapidly while imaging and achieved a 5-fold increase in the image signal-to-noise ratio. Finally, we demonstrated atomic-scale ( approximately 100 pm) tip-sample stability and registration over tens of minutes with a series of AFM images on transparent substrates. The stabilization technique requires low laser power (<1 mW), imparts a minimal perturbation upon the cantilever, and is independent of the tip-sample interaction. This work extends atomic-scale tip-sample control, previously restricted to cryogenic temperatures and ultrahigh vacuum, to a wide range of perturbative operating environments.


Assuntos
Microscopia de Força Atômica/métodos , Temperatura Baixa , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...