Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 48: 109105, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37095754

RESUMO

The data presented in this article are related to the research paper entitled "Observation of night-time emissions of the Earth in the near UV range from the International Space Station with the Mini-EUSO detector" (Remote Sensing of Environment, Volume 284, January 2023, 113336, https://doi.org/10.1016/j.rse.2022.113336). The data have been acquired with the Mini-EUSO detector, an UV telescope operating in the range 290-430 nm and located inside the International Space Station. The detector was launched in August 2019, and it has started operations from the nadir-facing UV-transparent window in the Russian Zvezda module in October 2019. The data presented here refer to 32 sessions acquired between 2019-11-19 and 2021-05-06. The instrument consists of a Fresnel-lens optical system and a focal surface composed of 36 multi-anode photomultiplier tubes, each with 64 channels, for a total of 2304 channels with single photon counting sensitivity. The telescope, with a square field-of-view of 44°, has a spatial resolution on the Earth surface of 6.3 km and saves triggered transient phenomena with a temporal resolution of 2.5 µs and 320 µs. The telescope also operates in continuous acquisition at a 40.96 ms scale. In this article, large-area night-time UV maps obtained processing the 40.96 ms data, taking averages over regions of some specific geographical areas (e.g., Europe, North America) and over the entire globe, are presented. Data are binned into 0.1° × 0.1° or 0.05° × 0.05° cells (depending on the scale of the map) over the Earth's surface. Raw data are made available in the form of tables (latitude, longitude, counts) and .kmz files (containing the .png images). These are - to the best of our knowledge - the highest sensitivity data in this wavelength range and can be of use to various disciplines.

2.
Space Sci Rev ; 218(1): 3, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35153338

RESUMO

EUSO-Balloon is a pathfinder for JEM-EUSO, the mission concept of a spaceborne observatory which is designed to observe Ultra-High Energy Cosmic Ray (UHECR)-induced Extensive Air Showers (EAS) by detecting their UltraViolet (UV) light tracks "from above." On August 25, 2014, EUSO-Balloon was launched from Timmins Stratospheric Balloon Base (Ontario, Canada) by the balloon division of the French Space Agency CNES. After reaching a floating altitude of 38 km, EUSO-Balloon imaged the UV light in the wavelength range ∼290-500 nm for more than 5 hours using the key technologies of JEM-EUSO. The flight allowed a good understanding of the performance of the detector to be developed, giving insights into possible improvements to be applied to future missions. A detailed measurement of the photoelectron counts in different atmospheric and ground conditions was achieved. By means of the simulation of the instrument response and by assuming atmospheric models, the absolute intensity of diffuse light was estimated. The instrument detected hundreds of laser tracks with similar characteristics to EASs shot by a helicopter flying underneath. These are the first recorded laser tracks measured from a fluorescence detector looking down on the atmosphere. The reconstruction of the direction of the laser tracks was performed. In this work, a review of the main results obtained by EUSO-Balloon is presented as well as implications for future space-based observations of UHECRs.

3.
Phys Rev Lett ; 93(18): 185701, 2004 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-15525179

RESUMO

We report large-scale atomistic simulation of midrange nanoscale hydrophobic interaction, manifested by the nucleation of nanobubble between nanometer-sized hydrophobes at constrained equilibrium. When the length scale of the hydrophobes is greater than 2 nm, the nanobubble formation shows hysteresis behavior resembling the first-order transition. Calculation of the potential of mean force versus interhydrophobe distance provides a quantitative measure of the strength of the nanoscale hydrophobic interaction.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Nanotecnologia/métodos , Simulação por Computador , Dobramento de Proteína , Proteínas/química , Termodinâmica , Água/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-11088188

RESUMO

We extend the recently proposed order-N algorithms for calculating linear- and nonlinear-response functions in time domain to the systems described by nonorthonormal basis sets.

5.
J Mol Biol ; 286(1): 219-32, 1999 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-9931261

RESUMO

The Ras protein and its homolog, Rap1A, have an identical "effector region" (residues 32-40) preceded by Asp30-Glu31 and Glu30-Lys31, respectively. In the complex of the "Ras-like" E30D/K31E mutant Rap1A with the Ras-binding domain (RBD), residues 51-131 of Raf-1, Glu31 in Rap1A forms a tight salt bridge with Lys84 in Raf-1. However, we have recently found that Raf-1 RBD binding of Ras is indeed reduced by the E31K mutation, but is not affected by the E31A mutation. Here, the "Rap1A-like" D30E/E31K mutant of Ras was prepared and shown to bind the Raf-1 RBD less strongly than wild-type Ras, but slightly more tightly than the E31K mutant. The backbone 1H, 13C, and 15N magnetic resonances of the Raf-1 RBD were assigned in complexes with the wild-type and D30E/E31K mutant Ras proteins in the guanosine 5'-O-(beta,gamma-imidotriphosphate)-bound form. The Lys84 residue in the Raf-1 RBD exhibited a large change in chemical shift upon binding wild-type Ras, suggesting that Lys84 interacts with wild-type Ras. The D30E/E31K mutant of Ras caused nearly the same perturbations in Raf-1 chemical shifts, including that of Lys84. We hypothesized that Glu31 in Ras may not be the major salt bridge partner of Lys84 in Raf-1. A molecular dynamics simulation of a model structure of the Raf-1 RBD.Ras.GTP complex suggested that Lys84 in Raf-1 might instead form a tight salt bridge with Asp33 in Ras. Consistent with this, the D33A mutation in Ras greatly reduced its Raf-I RBD binding activity. We conclude that the major salt bridge partner of Lys84 in Raf-1 may be Asp33 in Ras.


Assuntos
Proteínas Proto-Oncogênicas c-raf/química , Proteínas ras/química , Sequência de Aminoácidos , Ácido Aspártico/metabolismo , Simulação por Computador , Escherichia coli , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Recombinantes de Fusão/química , Homologia de Sequência de Aminoácidos , Proteínas ras/genética , Proteínas ras/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-11969947

RESUMO

We propose an efficient time-dependent algorithm for nonlinear response function that requires CPU time proportional to the system size, and study the size effects in two-photon absorption spectra of Si nanocrystallites by using this algorithm.

7.
Proteins ; 20(2): 139-48, 1994 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-7846024

RESUMO

Molecular dynamics simulations have been extensively used in research of proteins. Since these simulations are quite computer intensive, their acceleration is of main interest of the research. In molecular dynamics simulations, almost all computing time is consumed in calculating the forces between particles, e.g., Coulomb and van der Waals forces. We have designed and built GRAPE-2A (GRAvity PipE 2A), a special-purpose computer for use in simulations of classical many-body systems. GRAPE-2A calculates forces exerted on a particle from the other particles. GRAPE-2A can calculate force of an arbitrary functional form of a central force. The host computer, which is connected to GRAPE-2A through the VME bus, performs other calculations such as time integration. The peak speed of GRAPE-2A is 180 Mflops. We can also stimulate systems with periodic boundary conditions by the Ewald method, using GRAPE-2A and another special-purpose computer, WINE (Wave space INtegrator for the Ewald method).


Assuntos
Computadores , Computação Matemática , Simulação por Computador , Modelos Químicos , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...