Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(28): 11172-11180, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38946102

RESUMO

Improving separation efficiency in capillary electrophoresis (CE) requires systematic study of the influence of the electric field (or solute linear velocity) on plate height for a better understanding of the critical parameters controlling peak broadening. Even for poly(diallyldimethylammonium chloride) (PDADMAC)/poly(sodium styrenesulfonate) (PSS) successive multiple ionic-polymer layer (SMIL) coatings, which lead to efficient and reproducible separations of proteins, plate height increases with migration velocity, limiting the use of high electric fields in CE. Solute adsorption onto the capillary wall was generally considered as the main source of peak dispersion, explaining this plate height increase. However, experiments done with Taylor dispersion analysis and CE in the same conditions indicate that other phenomena may come into play. Protein adsorption with slow kinetics and few adsorption sites was established as a source of peak broadening for specific proteins. Surface charge inhomogeneity was also identified as a contribution to plate height due to local electroosmotic fluctuations. A model was proposed and applied to partial PDADMAC/poly(ethylene oxide) capillary coatings as well as PDADMAC/PSS SMIL coatings. Atomic force microscopy with topography and recognition imaging enabled the determination of roughness and charge distribution of the PDADMAC/PSS SMIL surface.


Assuntos
Eletro-Osmose , Eletroforese Capilar , Polietilenos , Eletroforese Capilar/métodos , Adsorção , Polietilenos/química , Proteínas/isolamento & purificação , Proteínas/química , Proteínas/análise , Compostos de Amônio Quaternário/química , Animais , Propriedades de Superfície
2.
Anal Chem ; 95(38): 14475-14483, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37695838

RESUMO

We investigate the interactions between C-reactive protein (CRP) and new CRP-binding peptide materials using experimental (biological and physicochemical) methods with the support of theoretical simulations (computational modeling analysis). Three specific CRP-binding peptides (P2, P3, and P9) derived from an M13 bacteriophage have been identified using phage-display technology. The binding efficiency of the peptides exposed on phages toward the CRP protein was demonstrated via biological methods. Fibers of the selected phages/peptides interact differently due to different compositions of amino acid sequences on the exposed peptides, which was confirmed by transmission electron microscopy. Numerical and experimental studies consistently showed that the P3 peptide is the best CRP binder. A combination of theoretical and experimental methods demonstrates that identifying the best binder can be performed simply, cheaply, and fast. Such an approach has not been reported previously for peptide screening and demonstrates a new trend in science where calculations can replace or support laborious experimental techniques. Finally, the best CRP binder─the P3 peptide─was used for CRP recognition on silicate-modified indium tin oxide-coated glass electrodes. The obtained electrodes exhibit a wide range of operation (1.0-100 µg mL-1) with a detection limit (LOD = 3σ/S) of 0.34 µg mL-1. Moreover, the dissociation constant Kd of 4.2 ± 0.144 µg mL-1 (35 ± 1.2 nM) was evaluated from the change in the current. The selectivity of the obtained electrode was demonstrated in the presence of three interfering proteins. These results prove that the presented P3 peptide is a potential candidate as a receptor for CRP, which can replace specific antibodies.


Assuntos
Proteína C-Reativa , Peptídeos , Sequência de Aminoácidos , Anticorpos , Bacteriófago M13
3.
Methods ; 197: 54-62, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33677061

RESUMO

Biosensing atomic force microscopy (AFM) offers the unique feature to determine the energy landscape of a bimolecular interaction at the real single molecule level. Furthermore, simultaneous and label-free mapping of molecular recognition and the determination of sample topography at the nanoscale gets possible. A prerequisite and one of the major parts in biosensing AFM are the bio-functionalized AFM tips. In the past decades, different approaches for tip functionalization have been developed. Using these functionalization strategies, several biological highly relevant interactions at the single molecule level have been explored. For the most common approach, the use of a heterobifunctional poly(ethylenglycol) crosslinker, a broad range of linkers for different chemical coupling strategies is available. Nonetheless, the time consuming functionalization protocol as well as the broad distribution of rupture length reduces the possibility of automation and may reduce the accuracy of the results. Here we present a stable and fast forward approach based on tetra-functional DNA tetrahedra. A fast functionalization and a sharp defined distribution of rupture length gets possible with low effort and high success rate. We tested the performance on the classical avidin biotin system by using tetrahedra with three disulfide legs for stable and site directed coupling to gold coated tips and a biotinylated end at the fourth vertex. A special advantage appears when working with a DNA aptamer as sensing molecule. In this case, the fourth strand can be extended by a certain DNA sequence complementary to the linkage part of an aptamer. This AFM tip functionalization protocol was applied on thrombin using DNA aptamers directed against the fibrinogen binding side of human thrombin.


Assuntos
Aptâmeros de Nucleotídeos , Avidina , Aptâmeros de Nucleotídeos/metabolismo , Avidina/química , Avidina/metabolismo , Biotina/química , DNA , Humanos , Microscopia de Força Atômica/métodos
4.
J Biol Chem ; 296: 100728, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33933454

RESUMO

Hydrophobins are surface-active proteins produced by filamentous fungi. The amphiphilic structure of hydrophobins is very compact, containing a distinct hydrophobic patch on one side of the molecule, locked by four intramolecular disulfide bridges. Hydrophobins form dimers and multimers in solution to shield these hydrophobic patches from water exposure. Multimer formation in solution is dynamic, and hydrophobin monomers can be exchanged between multimers. Unlike class I hydrophobins, class II hydrophobins assemble into highly ordered films at the air-water interface. In order to increase our understanding of the strength and nature of the interaction between hydrophobins, we used atomic force microscopy for single molecule force spectroscopy to explore the molecular interaction forces between class II hydrophobins from Trichoderma reesei under different environmental conditions. A genetically engineered hydrophobin variant, NCys-HFBI, enabled covalent attachment of proteins to the apex of the atomic force microscopy cantilever tip and sample surfaces in controlled orientation with sufficient freedom of movement to measure molecular forces between hydrophobic patches. The measured rupture force between two assembled hydrophobins was ∼31 pN, at a loading rate of 500 pN/s. The results indicated stronger interaction between hydrophobins and hydrophobic surfaces than between two assembling hydrophobin molecules. Furthermore, this interaction was stable under different environmental conditions, which demonstrates the dominance of hydrophobicity in hydrophobin-hydrophobin interactions. This is the first time that interaction forces between hydrophobin molecules, and also between naturally occurring hydrophobic surfaces, have been measured directly at a single-molecule level.


Assuntos
Proteínas Fúngicas/química , Interações Hidrofóbicas e Hidrofílicas , Imagem Individual de Molécula , Hypocreales , Propriedades de Superfície , Água/química
5.
Sensors (Basel) ; 21(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917195

RESUMO

An electrochemical quartz crystal microbalance (EC-QCM) is a versatile gravimetric technique that allows for parallel characterization of mass deposition and electrochemical properties. Despite its broad applicability, simultaneous characterization of two electrodes remains challenging due to practical difficulties posed by the dampening from fixture parasitics and the dissipative medium. In this study, we present a dual electrochemical QCM (dual EC-QCM) that is employed in a three-electrode configuration to enable consequent monitoring of mass deposition and viscous loading on two crystals, the working electrode (WE) and the counter electrode (CE). A novel correction approach, along with a three standard complex impedance calibration, is employed to overcome the effect of dampening while keeping high spectral sensitivity. Separation of viscous loading and rigid mass deposition is achieved by robust characterization of the complex impedance at the resonance frequency. Validation of the presented system is done by cyclic voltammetry characterization of Ag underpotential deposition on gold. The results indicate mass deposition of 412.2 ng for the WE and 345.6 ng for the CE, reflecting a difference of the initially-present Ag adhered to the surface. We also performed higher harmonic measurements that further corroborate the sensitivity and reproducibility of the dual EC-QCM. The demonstrated approach is especially intriguing for electrochemical energy storage applications where mass detection with multiple electrodes is desired.

6.
Nanoscale ; 12(43): 22097-22106, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33118583

RESUMO

The Rh blood group system plays a key role in transfusion and organ transplant medicine. The complex transmembrane Rh polypeptides RhD and RhCE carry numerous antigens, including the extremely immunogenic D antigen. The Rh polypeptides form multimolecular Rh complexes with certain transmembrane and skeletal proteins, with so far only incompletely understood physiological functions. Determination of the energy landscape of individual Rh binding epitopes towards their specific interaction partners as well as their localization across the red blood cell (RBC) membrane requires single molecule approaches including large area high resolution recognition imaging. Atomic force microscopy based molecular recognition force spectroscopy in combination with single molecule recognition imaging fulfills these requirements. For unbiased single molecule results, nano-mechanical influences due to cell elasticity have to be eliminated. This is realized by generation of ultra flat erythrocyte ghosts on a solid support. We developed a protocol for the preparation of complete ultraflat erythrocyte ghosts and determined the molecular binding behaviour of different anti-D antibodies towards their binding epitopes on RhD positive and negative erythrocytes. Performing optimized topography and recognition imaging at 16 Mpixel resolution allowed localisation of individual RhD molecules at the single molecule level across an entire RBC. A map of Rh antigens across integer ultraflat RBC ghosts was generated with nanometer resolution. Here we show a homogeneous distribution on rim and dimple regions with comparable receptor densities. Furthermore, differences in the energy landscape between specific monoclonal antibodies were determined at the single molecule level.


Assuntos
Membrana Eritrocítica , Eritrócitos , Anticorpos Monoclonais , Epitopos
7.
Sensors (Basel) ; 20(13)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630829

RESUMO

Tracking of biological and physiological processes on the nanoscale is a central part of the growing field of nanomedicine. Although atomic force microscopy (AFM) is one of the most appropriate techniques in this area, investigations in non-transparent fluids such as human blood are not possible with conventional AFMs due to limitations caused by the optical readout. Here, we show a promising approach based on self-sensing cantilevers (SSC) as a replacement for optical readout in biological AFM imaging. Piezo-resistors, in the form of a Wheatstone bridge, are embedded into the cantilever, whereas two of them are placed at the bending edge. This enables the deflection of the cantilever to be precisely recorded by measuring the changes in resistance. Furthermore, the conventional acoustic or magnetic vibration excitation in intermittent contact mode can be replaced by a thermal excitation using a heating loop. We show further developments of existing approaches enabling stable measurements in turbid liquids. Different readout and excitation methods are compared under various environmental conditions, ranging from dry state to human blood. To demonstrate the applicability of our laser-free bio-AFM for nanomedical research, we have selected the hemostatic process of blood coagulation as well as ultra-flat red blood cells in different turbid fluids. Furthermore, the effects on noise and scanning speed of different media are compared. The technical realization is shown (1) on a conventional optical beam deflection (OBD)-based AFM, where we replaced the optical part by a new SSC nose cone, and (2) on an all-electric AFM, which we adapted for measurements in turbid liquids.


Assuntos
Acústica , Microscopia de Força Atômica , Nanomedicina , Humanos
8.
Nano Lett ; 20(5): 4038-4042, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32320256

RESUMO

In recent decades, atomic force microscopy (AFM), in particular the force spectroscopy mode, has become a method of choice to study biomolecular interactions at the single-molecule level. However, grafting procedures as well as determining binding specificity remain challenging. We report here an innovative approach based on a photocleavable group that enables in situ release of the ligands bound to the AFM tip and thus allows direct assessment of the binding specificity. Applicable to a wide variety of molecules, the strategy presented here provides new opportunities to study specific interactions and deliver single molecules with high spatiotemporal resolution in a wide range of applications, including AFM-based cell biology.

9.
Artigo em Inglês | MEDLINE | ID: mdl-31803733

RESUMO

The mechanobiological behavior of mesenchymal stem cells (MSCs) in two- (2D) or three-dimensional (3D) cultures relies on the formation of actin filaments which occur as stress fibers and depends on mitochondrial dynamics involving vimentin intermediate filaments. Here we investigate whether human platelet lysate (HPL), that can potentially replace fetal bovine serum for clinical-scale expansion of functional cells, can modulate the stress fiber formation, alter mitochondrial morphology, change membrane elasticity and modulate immune regulatory molecules IDO and GARP in amnion derived MSCs. We can provide evidence that culture supplementation with HPL led to a reduction of stress fiber formation in 2D cultured MSCs compared to a conventional growth medium (MSCGM). 3D MSC cultures, in contrast, showed decreased actin concentrations independent of HPL supplementation. When stress fibers were further segregated by their binding to focal adhesions, a reduction in ventral stress fibers was observed in response to HPL in 2D cultured MSCs, while the length of the individual ventral stress fibers increased. Dorsal stress fibers or transverse arcs were not affected. Interestingly, ventral stress fiber formation did not correlate with membrane elasticity. 2D cultured MSCs did not show differences in the Young's modulus when propagated in the presence of HPL and further cultivation to passage 3 also had no effect on membrane elasticity. In addition, HPL reduced the mitochondrial mass of 2D cultured MSCs while the mitochondrial mass in 3D cultured MSCs was low initially. When mitochondria were segregated into punctuate, rods and networks, a cultivation-induced increase in punctuate and network mitochondria was observed in 2D cultured MSCs of passage 3. Finally, mRNA and protein expression of the immunomodulatory molecule IDO relied on stimulation of 2D culture MSCs with pro-inflammatory cytokines IFN-γ and TNF-α with no effect upon HPL supplementation. GARP mRNA and surface expression was constitutively expressed and did not respond to HPL supplementation or stimulation with IFN-γ and TNF-α. In conclusion, we can say that MSCs cultivated in 2D and 3D are sensitive to medium supplementation with HPL with changes in actin filament formation, mitochondrial dynamics and membrane elasticity that can have an impact on the immunomodulatory function of MSCs.

10.
Methods Mol Biol ; 1886: 327-341, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30374877

RESUMO

In the development and design of cell targeted nanoparticle-based systems the density of targeting moieties plays a fundamental role in allowing maximal cell-specific interaction. Here, we describe the use of molecular recognition force spectroscopy as a valuable tool for the characterization and optimization of targeted nanoparticles toward attaining cell-specific interaction. By tailoring the density of targeting moieties at the nanoparticle surface, one can correlate the unbinding event probability between nanoparticles tethered to an atomic force microscopy tip and cells to the nanoparticle vectoring capacity. This novel approach allows for a rapid and cost-effective design of targeted nanomedicines reducing the need for long and tedious in vitro tests.


Assuntos
Microscopia de Força Atômica , Imagem Molecular , Sondas Moleculares , Nanopartículas , Animais , Linhagem Celular , Análise de Dados , Sistemas de Liberação de Medicamentos , Humanos , Camundongos , Microscopia de Força Atômica/métodos , Imagem Molecular/métodos , Nanomedicina , Nanopartículas/química , Imagem Individual de Molécula/métodos
11.
Cell Stress Chaperones ; 23(4): 673-683, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29404895

RESUMO

Hsp70-1A-the major stress-inducible member of the HSP70 chaperone family-is being implicated in cancer diseases with the development of resistances to standard therapies. In normal cells, the protein is purely cytosolic, but in a growing number of tumor cells, a significant fraction can be identified on to the cell surface. The anchoring mechanism is still under debate, as Hsp70-1A lacks conventional signaling sequences for translocation from the cytosol to exoplasmic leaflet of the plasma membrane and common membrane binding domains. Recent reports propose a lipid-mediated anchoring mechanism based on a specific interaction with charged, saturated lipids such as dipalmitoyl phosphatidylserine (DPPS). Here, we prepared planar supported lipid bilayers (SLBs) to visualize the association of Hsp70-1A directly and on the single molecule level by atomic force microscopy (AFM). The single molecule sensitivity of our approach allowed us to explore the low concentration range of 0.05 to 1.0 µg/ml of Hsp70-1A which was not studied before. We compared the binding of the protein to bilayers with 20% DPPS lipid content both in the absence and presence of cholesterol. Hsp70-1A inserted exclusively into DPPS domains and assembled in clusters with increasing protein density. A critical density was reached for incubation with 0.5 µg/ml (7 nM); at higher concentrations, membrane defects were observed that originated from cluster centers. In the presence of cholesterol, this critical concentration leads to the formation of membrane blebs, which burst at higher concentrations supporting a previously proposed non-classical pathway for the export of Hsp70-1A by tumor cells. In the discussion of our data, we attempt to link the lipid-mediated plasma membrane localization of Hsp70-1A to its potential involvement in the development of resistances to radiation and chemotherapy based on our own findings and the current literature.


Assuntos
Extensões da Superfície Celular/metabolismo , Colesterol/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Microscopia de Força Atômica , Fosfatidilserinas/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo
12.
Adv Healthc Mater ; 6(21)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28752592

RESUMO

The ability to design nanoparticle delivery systems capable of selectively target their payloads to specific cell populations is still a major caveat in nanomedicine. One of the main hurdles is the fact that each nanoparticle formulation needs to be precisely tuned to match the specificities of the target cell and route of administration. In this work, molecular recognition force spectroscopy (MRFS) is presented as a tool to evaluate the specificity of neuron-targeted trimethyl chitosan nanoparticles to neuronal cell populations in biological samples of different complexity. The use of atomic force microscopy tips functionalized with targeted or non-targeted nanoparticles made it possible to assess the specific interaction of each formulation with determined cell surface receptors in a precise fashion. More importantly, the combination of MRFS with fluorescent microscopy allowed to probe the nanoparticles vectoring capacity in models of high complexity, such as primary mixed cultures, as well as specific subcellular regions in histological tissues. Overall, this work contributes for the establishment of MRFS as a powerful alternative technique to animal testing in vector design and opens new avenues for the development of advanced targeted nanomedicines.


Assuntos
Microscopia de Força Atômica/métodos , Modelos Biológicos , Pontos Quânticos/química , Animais , Benzoxazóis/química , Células Cultivadas , Quitosana/química , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Células NIH 3T3 , Nanomedicina , Plasmídeos/química , Plasmídeos/metabolismo , Polímeros/química , Pontos Quânticos/metabolismo , Compostos de Quinolínio/química , Tubulina (Proteína)/metabolismo
13.
Anal Bioanal Chem ; 409(11): 2767-2776, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28229174

RESUMO

We studied the interaction of the specific DNA aptamer sgc8c immobilized at the AFM tip with its corresponding receptor, the protein tyrosine kinase-7 (PTK7) embedded in the membrane of acute lymphoblastic leukemia (ALL) cells (Jurkat T-cells). Performing single molecule force spectroscopy (SMFS) experiments, we showed that the aptamer sgc8c bound with high probability (38.3 ± 7.48%) and high specificity to PTK7, as demonstrated by receptor blocking experiments and through comparison with the binding behavior of a nonspecific aptamer. The determined kinetic off-rate (koff = 5.16 s-1) indicates low dissociation of the sgc8c-PTK7 complex. In addition to the pulling force experiments, simultaneous topography and recognition imaging (TREC) experiments using AFM tips functionalized with sgc8c aptamers were realized on the outer regions surface of surface-immobilized Jurkat cells for the first time. This allowed determination of the distribution of PTK7 without any labeling and at near physiological conditions. As a result, we could show a homogeneous distribution of PTK7 molecules on the outer regions of ALL cells with a surface density of 325 ± 12 PTK7 receptors (or small receptor clusters) per µm2. Graphical Abstract The specific interaction of the DNA aptamer sgc8c and protein tyrosine kinase-7 (PTK7) on acute lymphoblastic leukemia (ALL) cells was characterized. AFM based single molecule force spectroscopy (SMFS) yielded a kinetic off-rate of 5.16 s-1 of the complex. Simultaneous topography and recognition imaging (TREC) revealed a PTK7 density of 325 ± 12 molecules or clusters per µm2 in the cell membrane.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Moléculas de Adesão Celular/metabolismo , Microscopia de Força Atômica/métodos , Imagem Molecular/métodos , Mapeamento de Interação de Proteínas/métodos , Receptores Proteína Tirosina Quinases/metabolismo , Linfócitos T/metabolismo , Sítios de Ligação , Técnicas Biossensoriais/métodos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Humanos , Células Jurkat , Ligação Proteica , Linfócitos T/ultraestrutura
14.
Anal Chim Acta ; 951: 1-15, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-27998477

RESUMO

A successive multiple ionic polymer layer (SMIL) coating composed of four layers improved the capillary electrophoretic separation of a recombinant major birch pollen allergen and closely related variants when poly(acrylamide-co-2-acrylamido-2-methyl-1-propansulfonate) (55% PAMAMPS) replaced dextran sulfate as terminal SMIL layer. 55% PAMAMPS decelerated the electroosmotic flow (EOF) due to its lower charge density. Atomic force microscopy (AFM) was used to investigate SMIL properties directly on the inner capillary surface and to relate them to EOF measurements and results of associated CZE separations of a mixture of model proteins and peptides that were performed in the same capillary. For the first time, AFM-based biosensing topography and recognition imaging mode (TREC) under liquid conditions was applied for a sequential characterization of the inner surface of a SMIL coated capillary after selected treatments including pristine SMIL, SMIL after contact with the model mixture, after alkaline rinsing, and the replenishment of the terminal polyelectrolyte layer. A cantilever with tip-tethered avidin was used to determine the charge homogeneity of the SMIL surface in the TREC mode. SMIL coated rectangular capillaries with 100 µm internal diameter assured accessibility of the inner surface for this cantilever type. Observed changes in CZE performance and EOF mobility during capillary treatment were also reflected by alterations in surface roughness and charge distribution of the SMIL coating. A renewal of the terminal SMIL layer restored the original surface properties of SMIL and the separation performance. The alliance of the novel TREC approach and CZE results allows for an improved understanding and a comprehensive insight in effects occurring on capillary coatings.


Assuntos
Alérgenos/análise , Eletroforese Capilar , Polímeros/química , Betula , Eletro-Osmose , Íons , Pólen , Proteínas/análise
15.
Anal Chim Acta ; 930: 39-48, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27265903

RESUMO

Capillary zone electrophoresis (CZE) is a powerful analytical technique for fast and efficient separation of different analytes ranging from small inorganic ions to large proteins. However electrophoretic resolution significantly depends on the coating of the inner capillary surface. High technical efforts like Successive Multiple Ionic Polymer Layer (SMIL) generation have been taken to develop stable coatings with switchable surface charges fulfilling the requirements needed for optimal separation. Although the performance can be easily proven in normalized test runs, characterization of the coating itself remains challenging. Atomic force microscopy (AFM) allows for topographical investigation of biological and analytical relevant surfaces with nanometer resolution and yields information about the surface roughness and homogeneity. Upgrading the scanning tip to a molecular biosensor by adhesive molecules (like partly inverted charged molecules) allows for performing topography and recognition imaging (TREC). As a result, simultaneously acquired sample topography and adhesion maps can be recorded. We optimized this technique for electrophoresis capillaries and investigated the charge distribution of differently composed and treated SMIL coatings. By using the positively charged protein avidin as a single molecule sensor, we compared these SMIL coatings with respect to negative charges, resulting in adhesion maps with nanometer resolution. The capability of TREC as a functional investigation technique at the nanoscale was successfully demonstrated.


Assuntos
Eletroforese Capilar/métodos , Microscopia de Força Atômica/métodos , Polímeros/química , Adesividade , Modelos Moleculares , Conformação Molecular
16.
Biosensors (Basel) ; 6(2): 23, 2016 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-27231946

RESUMO

We developed an impedance quartz crystal microbalance (QCM) approach with the ability to simultaneously record mass changes and calibrated energy dissipation with high sensitivity using an impedance analyzer. This impedance QCM measures frequency shifts and resistance changes of sensing quartz crystals very stable, accurately, and calibrated, thus yielding quantitative information on mass changes and dissipation. Resistance changes below 0.3 Ω were measured with corresponding dissipation values of 0.01 µU (micro dissipation units). The broadband impedance capabilities allow measurements between 20 Hz and 120 MHz including higher harmonic modes of up to 11th order for a 10 MHz fundamental resonance frequency quartz crystal. We demonstrate the adsorbed mass, calibrated resistance, and quantitative dissipation measurements on two biological systems including the high affinity based avidin-biotin interaction and nano-assemblies of polyelectrolyte layers. The binding affinity of a protein-antibody interaction was determined. The impedance QCM is a versatile and simple method for accurate and calibrated resistance and dissipation measurements with broadband measurement capabilities for higher harmonics measurements.


Assuntos
Técnicas Biossensoriais , Impedância Elétrica , Técnicas de Microbalança de Cristal de Quartzo , Calibragem , Eletrólitos/química
17.
Molecules ; 19(8): 12531-46, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25153869

RESUMO

Avidin and avidin-like proteins are widely used in numerous techniques since the avidin-biotin interaction is known to be very robust and reliable. Within this study, we investigated this bond at the molecular level under harsh conditions ranging from very low to very high pH values. We compared avidin with streptavidin and a recently developed avidin-based mutant, chimeric avidin. To gain insights of the energy landscape of these interactions we used a single molecule approach and performed the Single Molecule Force Spectroscopy atomic force microscopy technique. There, the ligand (biotin) is covalently coupled to a sharp AFM tip via a distensible hetero-bi-functional crosslinker, whereas the receptor of interest is immobilized on the probe surface. Receptor-ligand complexes are formed and ruptured by repeatedly approaching and withdrawing the tip from the surface. Varying both pulling velocity and pH value, we could determine changes of the energy landscape of the complexes. Our results clearly demonstrate that avidin, streptavidin and chimeric avidin are stable over a wide pH range although we could identify differences at the outer pH range. Taking this into account, they can be used in a broad range of applications, like surface sensors at extreme pH values.


Assuntos
Avidina/química , Biotina/química , Concentração de Íons de Hidrogênio , Proteínas Imobilizadas/química , Cinética , Microscopia de Força Atômica , Ligação Proteica , Estreptavidina/química , Termodinâmica
18.
Nat Commun ; 5: 4394, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25008037

RESUMO

Binding of antibodies to their cognate antigens is fundamental for adaptive immunity. Molecular engineering of antibodies for therapeutic and diagnostic purposes emerges to be one of the major technologies in combating many human diseases. Despite its importance, a detailed description of the nanomechanical process of antibody-antigen binding and dissociation on the molecular level is lacking. Here we utilize high-speed atomic force microscopy to examine the dynamics of antibody recognition and uncover a principle; antibodies do not remain stationary on surfaces of regularly spaced epitopes; they rather exhibit 'bipedal' stochastic walking. As monovalent Fab fragments do not move, steric strain is identified as the origin of short-lived bivalent binding. Walking antibodies gather in transient clusters that might serve as docking sites for the complement system and/or phagocytes. Our findings could inspire the rational design of antibodies and multivalent receptors to exploit/inhibit steric strain-induced dynamic effects.


Assuntos
Complexo Antígeno-Anticorpo/fisiologia , Antígenos de Bactérias/fisiologia , Antígenos Virais/fisiologia , Epitopos/fisiologia , Imunoglobulina G/fisiologia , Animais , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/imunologia , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Antígenos Virais/química , Antígenos Virais/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/fisiologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/fisiologia , Epitopos/química , Epitopos/imunologia , Humanos , Imunoglobulina G/química , Imunoglobulina G/imunologia , Microscopia de Força Atômica , Ligação Proteica/fisiologia , Processos Estocásticos
19.
Expert Opin Drug Deliv ; 11(8): 1237-53, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24809228

RESUMO

INTRODUCTION: The therapeutic effects of medicinal drugs not only depend on their properties, but also on effective transport to the target receptor. Here we highlight recent developments in this discipline and show applications of atomic force microscopy (AFM) that enable us to track the effects of drugs and the effectiveness of nanoparticle delivery at the single molecule level. AREAS COVERED: Physiological AFM imaging enables visualization of topographical changes to cells as a result of drug exposure and allows observation of cellular responses that yield morphological changes. When we upgrade the regular measuring tip to a molecular biosensor, it enables investigation of functional changes at the molecular level via single molecule force spectroscopy. EXPERT OPINION: Biosensing AFM techniques have generated powerful tools to monitor drug delivery in (living) cells. While technical developments in actual AFM methods have simplified measurements at relevant physiological conditions, understanding both the biological and technical background is still a crucial factor. However, due to its potential impact, we expect the number of application-based biosensing AFM techniques to further increase in the near future.


Assuntos
Técnicas Biossensoriais , Sistemas de Liberação de Medicamentos/métodos , Monitoramento de Medicamentos/métodos , Microscopia de Força Atômica , Animais , Humanos , Nanopartículas , Nanotecnologia
20.
J Mol Recognit ; 27(2): 92-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24436126

RESUMO

Molecular recognition force spectroscopy, a biosensing atomic force microscopy technique allows to characterise the dissociation of ligand-receptor complexes at the molecular level. Here, we used molecular recognition force spectroscopy to study the binding capability of recently developed testosterone binders. The two avidin-based proteins called sbAvd-1 and sbAvd-2 are expected to bind both testosterone and biotin but differ in their binding behaviour towards these ligands. To explore the ligand binding and dissociation energy landscape of these proteins, we tethered biotin or testosterone to the atomic force microscopy probe while the testosterone-binding protein was immobilized on the surface. Repeated formation and rupture of the ligand-receptor complex at different pulling velocities allowed determination of the loading rate dependence of the complex-rupturing force. In this way, we obtained the molecular dissociation rate (k(off)) and energy landscape distances (x(ß)) of the four possible complexes: sbAvd-1-biotin, sbAvd-1-testosterone, sbAvd-2-biotin and sbAvd-2-testosterone. It was found that the kinetic off-rates for both proteins and both ligands are similar. In contrast, the x(ß) values, as well as the probability of complex formations, varied considerably. In addition, competitive binding experiments with biotin and testosterone in solution differ significantly for the two testosterone-binding proteins, implying a decreased cross-reactivity of sbAvd-2. Unravelling the binding behaviour of the investigated testosterone-binding proteins is expected to improve their usability for possible sensing applications.


Assuntos
Avidina/química , Técnicas Biossensoriais , Microscopia de Força Atômica , Testosterona/química , Biotina/química , Humanos , Cinética , Ligantes , Ligação Proteica , Análise Espectral , Estreptavidina/química , Testosterona/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...