Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34301080

RESUMO

Computational fluid dynamics (CFD) simulation is an important tool as it enables engineers to study different design options without a time-consuming experimental workload. However, the prediction accuracy of any CFD simulation depends upon the set boundary conditions and upon the applied rheological constitutive equation. In the present study the viscoelastic nature of an unfilled gum acrylonitrile butadiene rubber (NBR) is considered by applying the integral and time-dependent Kaye-Bernstein-Kearsley-Zapas (K-BKZ) rheological model. First, exhaustive testing is carried out in the linear viscoelastic (LVE) and non-LVE deformation range including small amplitude oscillatory shear (SAOS) as well as high pressure capillary rheometer (HPCR) tests. Next, three abrupt capillary dies and one tapered orifice die are modeled in Ansys POLYFLOW. The pressure prediction accuracy of the K-BKZ/Wagner model was found to be excellent and insensitive to the applied normal force in SAOS testing as well as to the relation of first and second normal stress differences, provided that damping parameters are fitted to steady-state rheological data. Moreover, the crucial importance of viscoelastic modeling is proven for rubber materials, as two generalized Newtonian fluid (GNF) flow models severely underestimate measured pressure data, especially in contraction flow-dominated geometries.

2.
Materials (Basel) ; 14(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562577

RESUMO

Photopolymerization has undergone significant development in recent years. It enables fast and easy processing of materials with customized properties and allows precise printing of complex surface geometries. Nevertheless, photopolymerization is mainly applied to cure thin films since the low curing depth limits the fast production of large volumes. Frontal photopolymerization (FPP) is suitable to overcome these limitations so that curing of centimeter-thick (meth)acrylic layers can be accomplished within minutes by light induction only. Prerequisites, however, are the low optical density of the resin and bleaching ability of the photoinitiator. To date, tailored FPP-resins are not commercially available. This study discusses the potential of long-chain polyether dimethacrylates, offering high-temperature resistance and low optical density, as crosslinkers in photobleaching resins and investigates the mechanical properties of photofrontally-cured copolymers. Characteristics ranging from ductile to hard and brittle are observed in tensile tests, demonstrating that deep curing and versatile material properties are achieved with FPP. Analyzed components display uniform polymerization over a depth of four centimeters in Fourier transform infrared spectroscopy and swelling tests.

3.
Polymers (Basel) ; 12(6)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512877

RESUMO

Photopolymerization offers substantial advantages in terms of time, temperature, energy consumption, and spatial control of the initiation. The application however is strongly limited due to the constrained penetration of light into thick films. Strategies to overcome the problem of limited curing depth, as well as to improve the curing of shadow areas, involve dual curing, frontal polymerization, and upconversion of particles. Whereas excellent results have been accomplished applying photofrontal polymerization on a theoretical level, few studies report on practical applications achieving high curing depth within short time. This study aims to investigate the potential of photofrontal polymerization, performed only with photoinitiator and light, for the fast and easy production of several-centimeter-thick (meth)acrylic layers. Monomer/ initiator systems were evaluated with respect to their optical density as well as photobleaching behavior. Moreover, depth-dependent polymerization was studied in specimens of varying monomer ratio and photoinitiator concentration. When an ideal photoinitiator concentration was selected, curing up to 52 mm in depth was accomplished within minutes.

4.
Polymers (Basel) ; 8(5)2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30979297

RESUMO

The investigation of mica and mica/epoxy-composites has always been of high importance and has gained increased attention in recent years due to their significant role as insulation material in the electrical industry. Electrical insulation represents a key factor regarding the reliability and lifespan of high voltage rotating machines. As the demand for generating power plants is increasing, rotating machines are of intrinsic importance to the electrical energy supply. Therefore, impeccable functioning is of immense importance for both the producers of high voltage machines as well as the energy suppliers. Thus, cost reduction caused by shorter maintenance times and higher operational lifespan has become the focus of attention. Besides the electrical properties, composites should offer compatible chemical and mechanical, as well as thermal characteristics for their usage in insulating systems. Furthermore, knowledge of several occurring stresses leading to the final breakdown of the whole insulation is required. This review aims to give an overview of the properties of pure components, the composite, and the possible occurring failure mechanisms which can lead to a full understanding of insulation materials for high voltage rotating machines and therefore establish a basis for prospective optimizations.

5.
PLoS One ; 6(10): e26349, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22039468

RESUMO

Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme of lipolysis. ATGL specifically hydrolyzes triacylglycerols (TGs), thereby generating diacylglycerols and free fatty acids. ATGL's enzymatic activity is co-activated by the protein comparative gene identification-58 (CGI-58) and inhibited by the protein G0/G1 switch gene 2 (G0S2). The enzyme is predicted to act through a catalytic dyad (Ser47, Asp166) located within the conserved patatin domain (Ile10-Leu178). Yet, neither an experimentally determined 3D structure nor a model of ATGL is currently available, which would help to understand how CGI-58 and G0S2 modulate ATGL's activity. In this study we determined the minimal active domain of ATGL. This minimal fragment of ATGL could still be activated and inhibited by CGI-58 and G0S2, respectively. Furthermore, we show that this minimal domain is sufficient for protein-protein interaction of ATGL with its regulatory proteins. Based on these data, we generated a 3D homology model for the minimal domain. It strengthens our experimental finding that amino acids between Leu178 and Leu254 are essential for the formation of a stable protein domain related to the patatin fold. Our data provide insights into the structure-function relationship of ATGL and indicate higher structural similarities in the N-terminal halves of mammalian patatin-like phospholipase domain containing proteins, (PNPLA1, -2,- 3 and -5) than originally anticipated.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/fisiologia , Proteínas de Ciclo Celular/fisiologia , Leucina/metabolismo , Lipase/química , Sequência de Aminoácidos , Animais , Clonagem Molecular , Ativação Enzimática , Hidrólise , Lipase/antagonistas & inibidores , Lipase/genética , Lipase/metabolismo , Lipólise , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA