Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 630: 122437, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36435505

RESUMO

Drug-eluting stents (DESs) are drug-coated vascular implants that inhibit smooth muscle cell proliferation and limit in-stent re-stenosis. However, traditional DESs release a single drug into the blood and cannot cope with complex mechanisms in atherosclerosis and body responses. The present study aimed to develop a novel multimodal stent by fabricating asymmetric coating with electrophoretic deposition and electrospinning. Herein, we use heparin-loaded alginate (Hep/Alg) and atorvastatin calcium-loaded polyurethane (AtvCa/PU) coatings on the stent luminal and abluminal surfaces, respectively. Scanning electron microscopy (SEM) micrographs showed that the alginate coatings had uniformity and thin thickness. Meanwhile, the PU fibers were formed without beads, with an acceptable diameter and suitable mechanical properties. PU nanofiber revealed minimal degradation in a 1-month study. The release of AtvCa and Hep continued for 8 days without a significant initial burst release. None of the stent coatings were cytotoxic or hemolytic, and PU nanofibers supported the survival of human umbilical endothelial cells (HUVEC) with high adhesion and flattened morphologies. The results indicate that electrophoretic deposition and electrospinning have significant potential for achieving asymmetric coating on stents and a promising approach for dual drug release for multimodal effects in vascular stent applications.


Assuntos
Stents Farmacológicos , Humanos , Células Endoteliais , Stents , Liberação Controlada de Fármacos , Alginatos , Materiais Revestidos Biocompatíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...