Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Math Neurosci ; 10(1): 8, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32405723

RESUMO

Networks of neurons in the cerebral cortex exhibit a balance between excitation (positive input current) and inhibition (negative input current). Balanced network theory provides a parsimonious mathematical model of this excitatory-inhibitory balance using randomly connected networks of model neurons in which balance is realized as a stable fixed point of network dynamics in the limit of large network size. Balanced network theory reproduces many salient features of cortical network dynamics such as asynchronous-irregular spiking activity. Early studies of balanced networks did not account for the spatial topology of cortical networks. Later works introduced spatial connectivity structure, but were restricted to networks with translationally invariant connectivity structure in which connection probability depends on distance alone and boundaries are assumed to be periodic. Spatial connectivity structure in cortical network does not always satisfy these assumptions. We use the mathematical theory of integral equations to extend the mean-field theory of balanced networks to account for more general dependence of connection probability on the spatial location of pre- and postsynaptic neurons. We compare our mathematical derivations to simulations of large networks of recurrently connected spiking neuron models.

2.
Phys Rev E ; 99(5-1): 052414, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31212573

RESUMO

Understanding the magnitude and structure of interneuronal correlations and their relationship to synaptic connectivity structure is an important and difficult problem in computational neuroscience. Early studies show that neuronal network models with excitatory-inhibitory balance naturally create very weak spike train correlations, defining the "asynchronous state." Later work showed that, under some connectivity structures, balanced networks can produce larger correlations between some neuron pairs, even when the average correlation is very small. All of these previous studies assume that the local network receives feedforward synaptic input from a population of uncorrelated spike trains. We show that when spike trains providing feedforward input are correlated, the downstream recurrent network produces much larger correlations. We provide an in-depth analysis of the resulting "correlated state" in balanced networks and show that, unlike the asynchronous state, it produces a tight excitatory-inhibitory balance consistent with in vivo cortical recordings.

3.
PLoS Comput Biol ; 14(3): e1006048, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29543827

RESUMO

Understanding the relationship between external stimuli and the spiking activity of cortical populations is a central problem in neuroscience. Dense recurrent connectivity in local cortical circuits can lead to counterintuitive response properties, raising the question of whether there are simple arithmetical rules for relating circuits' connectivity structure to their response properties. One such arithmetic is provided by the mean field theory of balanced networks, which is derived in a limit where excitatory and inhibitory synaptic currents precisely balance on average. However, balanced network theory is not applicable to some biologically relevant connectivity structures. We show that cortical circuits with such structure are susceptible to an amplification mechanism arising when excitatory-inhibitory balance is broken at the level of local subpopulations, but maintained at a global level. This amplification, which can be quantified by a linear correction to the classical mean field theory of balanced networks, explains several response properties observed in cortical recordings and provides fundamental insights into the relationship between connectivity structure and neural responses in cortical circuits.


Assuntos
Córtex Cerebral/fisiologia , Homeostase/fisiologia , Vias Neurais/fisiologia , Potenciais de Ação/fisiologia , Simulação por Computador , Modelos Neurológicos , Modelos Teóricos , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...