Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 326(4): C1272-C1290, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602847

RESUMO

Sodium-glucose cotransporter, type 2 inhibitors (SGLT2i) are emerging as the gold standard for treatment of type 2 diabetes (T2D) with renal protective benefits independent of glucose lowering. We took a high-level approach to evaluate the effects of the SGLT2i, empagliflozin (EMPA) on renal metabolism and function in a prediabetic model of metabolic syndrome. Male and female 12-wk-old TallyHo (TH) mice, and their closest genetic lean strain (Swiss-Webster, SW) were treated with a high-milk-fat diet (HMFD) plus/minus EMPA (@0.01%) for 12-wk. Kidney weights and glomerular filtration rate were slightly increased by EMPA in the TH mice. Glomerular feature analysis by unsupervised clustering revealed sexually dimorphic clustering, and one unique cluster relating to EMPA. Periodic acid Schiff (PAS) positive areas, reflecting basement membranes and mesangium were slightly reduced by EMPA. Phasor-fluorescent life-time imaging (FLIM) of free-to-protein bound NADH in cortex showed a marginally greater reliance on oxidative phosphorylation with EMPA. Overall, net urine sodium, glucose, and albumin were slightly increased by EMPA. In TH, EMPA reduced the sodium phosphate cotransporter, type 2 (NaPi-2), but increased sodium hydrogen exchanger, type 3 (NHE3). These changes were absent or blunted in SW. EMPA led to changes in urine exosomal microRNA profile including, in females, enhanced levels of miRs 27a-3p, 190a-5p, and 196b-5p. Network analysis revealed "cancer pathways" and "FOXO signaling" as the major regulated pathways. Overall, EMPA treatment to prediabetic mice with limited renal disease resulted in modifications in renal metabolism, structure, and transport, which may preclude and underlie protection against kidney disease with developing T2D.NEW & NOTEWORTHY Renal protection afforded by sodium glucose transporter, type 2 inhibitors (SGLT2i), e.g., empagliflozin (EMPA) involves complex intertwined mechanisms. Using a novel mouse model of obesity with insulin resistance, the TallyHo/Jng (TH) mouse on a high-milk-fat diet (HMFD), we found subtle changes in metabolism including altered regulation of sodium transporters that line the renal tubule. New potential epigenetic determinants of metabolic changes relating to FOXO and cancer signaling pathways were elucidated from an altered urine exosomal microRNA signature.


Assuntos
Compostos Benzidrílicos , Diabetes Mellitus Tipo 2 , Glucosídeos , Nefropatias , MicroRNAs , Neoplasias , Estado Pré-Diabético , Inibidores do Transportador 2 de Sódio-Glicose , Masculino , Feminino , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Estado Pré-Diabético/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Rim , Glucose/farmacologia , MicroRNAs/farmacologia , Sódio
2.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175762

RESUMO

Insulin facilitates renal sodium reabsorption and attenuates gluconeogenesis. Sex differences in this regulation have not been well characterized. Using tetracycline-inducible Cre-lox recombination, we knocked out (KO) the insulin receptor (InsR) from the renal tubule in adult male (M) and female (F) mice (C57Bl6 background) with a paired box 8 (PAX8) promoter. Body weights were not affected by the KO, but mean kidney weights were reduced in the KO mice (13 and 3%, in M and F, respectively, relative to wild-type (WT) mice). A microscopic analysis revealed 25 and 19% reductions in the proximal tubule (PT) and cortical collecting duct cell heights, respectively, in KOMs relative to WTMs. The reductions were 5 and 11% for KOFs. Western blotting of renal cortex homogenates showed decreased protein levels for the ß and γ subunits of the epithelial sodium channel (ENaC) and the sodium-potassium-2-chloride cotransporter type 2 (NKCC2) in both sexes of KO mice; however, α-ENaC was upregulated in KOMs and downregulated in KOFs. Both sexes of KO mice cleared exogenously administered glucose faster than the WT mice and had lower semi-fasted, anesthetized blood glucose levels. However, KOMs (but not KOFs) demonstrated evidence of enhanced renal gluconeogenesis, including higher levels of renal glucose-6-phosphatase, the PT's production of glucose, post-prandial blood glucose, and plasma insulin, whereas KOFs exhibited downregulation of renal high-capacity sodium glucose cotransporter (SGLT2) and upregulation of SGLT1; these changes appeared to be absent in the KOM. Overall, these findings suggest a sex-differential reliance on intact renal tubular InsR signaling which may be translationally important in type 2 diabetes, obesity, or insulin resistance when renal insulin signaling is reduced.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor de Insulina , Feminino , Masculino , Animais , Camundongos , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Glicemia , Insulina/metabolismo , Glucose/metabolismo , Camundongos Knockout , Sódio/metabolismo , Canais Epiteliais de Sódio/metabolismo
3.
4.
Biomolecules ; 12(9)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36139016

RESUMO

Sodium glucose cotransporter, type 2 inhibitors, such as Empagliflozin, are protective of the kidneys by unclear mechanisms. Our aim was to determine how Empagliflozin affected kidney cortical metabolome and lipidome in mice. Adult male TALLYHO mice (prone to obesity) were treated with a high-milk-fat diet, or this diet containing Empagliflozin (0.01%), for 8 weeks. Targeted and untargeted metabolomics and lipidomics were conducted on kidney cortex by liquid chromatography followed by tandem mass-spectroscopy. Metabolites were statistically analyzed by MetaboAnalyst 5.0, LipidSig (lipid species only) and/or CEU Mass Mediator (untargeted annotation). In general, volcano plotting revealed oppositely skewed patterns for targeted metabolites (primarily hydrophilic) and lipids (hydrophobic) in that polar metabolites showed a larger number of decreased species, while non-polar (lipids) had a greater number of increased species (>20% changed and/or raw p-value < 0.05). The top three pathways regulated by Empagliflozin were urea cycle, spermine/spermidine biosynthesis, and aspartate metabolism, with an amino acid network being highly affected, with 14 of 20 classic amino acids down-regulated. Out of 75 changed polar metabolites, only three were up-regulated, i.e., flavin mononucleotide (FMN), uridine, and ureidosuccinic acid. Both FMN and uridine have been shown to be protective of the kidney. Scrutiny of metabolites of glycolysis/gluconeogenesis/Krebs cycle revealed a 20−45% reduction in several species, including phosphoenolpyruvate (PEP), succinate, and malic acid. In contrast, although overall lipid quantity was not higher, several lipid species were increased by EMPA, including those of the classes, phosphatidic acids, phosphatidylcholines, and carnitines. Overall, these analyses suggest a protection from extensive metabolic load and the corresponding oxidative stress with EMPA in kidney. This may be in response to reduced energy demands of the proximal tubule as a result of inhibition of transport and/or differences in metabolic pools available for metabolism.


Assuntos
Inibidores do Transportador 2 de Sódio-Glicose , Animais , Ácido Aspártico/metabolismo , Compostos Benzidrílicos , Respiração Celular , Mononucleotídeo de Flavina/metabolismo , Glucosídeos , Rim/metabolismo , Masculino , Metaboloma , Camundongos , Camundongos Obesos , Ácidos Fosfatídicos/metabolismo , Fosfatidilcolinas , Fosfoenolpiruvato/metabolismo , Transportador 2 de Glucose-Sódio , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Espermidina/metabolismo , Espermina/metabolismo , Succinatos/metabolismo , Ureia/metabolismo , Uridina/metabolismo
5.
Int J Mol Sci ; 23(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35628485

RESUMO

Sodium-glucose co-transporters (SGLTs) serve to reabsorb glucose in the kidney. Recently, these transporters, mainly SGLT2, have emerged as new therapeutic targets for patients with diabetes and kidney disease; by inhibiting glucose reabsorption, they promote glycosuria, weight loss, and improve glucose tolerance. They have also been linked to cardiac protection and mitigation of liver injury. However, to date, the mechanism(s) by which SGLT2 inhibition promotes systemic improvements is not fully appreciated. Using an obese TallyHo mouse model which recapitulates the human condition of diabetes and nonalcoholic fatty liver disease (NAFLD), we sought to determine how modulation of renal glucose handling impacts liver structure and function. Apart from an attenuation of hyperglycemia, Empagliflozin was found to decrease circulating triglycerides and lipid accumulation in the liver in male TallyHo mice. This correlated with lowered hepatic cholesterol esters. Using in vivo MRI analysis, we further determined that the reduction in hepatic steatosis in male TallyHo mice was associated with an increase in nuchal white fat indicative of "healthy adipose expansion". Notably, this whitening of the adipose came at the expense of brown adipose tissue. Collectively, these data indicate that the modulation of renal glucose handling has systemic effects and may be useful as a treatment option for NAFLD and steatohepatitis.


Assuntos
Tecido Adiposo Branco , Diabetes Mellitus , Hepatopatia Gordurosa não Alcoólica , Inibidores do Transportador 2 de Sódio-Glicose , Tecido Adiposo Marrom , Tecido Adiposo Branco/crescimento & desenvolvimento , Animais , Compostos Benzidrílicos/farmacologia , Glucose/metabolismo , Glucosídeos/farmacologia , Humanos , Masculino , Camundongos , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/complicações , Obesidade/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
6.
Life Sci ; 296: 120444, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35245523

RESUMO

Peroxisome proliferator activated receptor alpha (PPAR-α) deletion has been shown to increase blood pressure (BP). We hypothesized that the BP increase in PPAR-α KO mice was mediated by increased expression and activity of basolateral Na+/K+ ATPase (NKA) pump. To address this hypothesis, we treated wild-type (WT) and PPAR-α knockout (KO) mice with a slow-pressor dose of angiotensin II (400 ng/kg·min) for 12 days by osmotic minipump. Radiotelemetry showed no significant differences in baseline mean arterial pressure (MAP) between WT and PPAR-α KO mice; however, by day 12 of infusion, MAP was significantly higher in PPAR-α KO mice (156 ± 16) compared to WT mice (138 ± 11 mmHg). NKA activity and protein expression (α1 subunit) were significantly higher in PPAR-α KO mice compared to WT mice. There was no significant difference in NKA mRNA levels. Angiotensin II further increased the expression and activity of the NKA in both genotypes along with the water channel, aquaporin 1 (Aqp1). In contrast, angiotensin II decreased the expression (64-97% reduction in band density) of sodium­hydrogen exchanger-3 (NHE3), NHE regulatory factor-1 (NHERF1, Slc9a3r1), sodium­potassium-2-chloride cotransporter (NKCC2), and epithelial sodium channel (ENaC) ß- and γ- subunits in the renal cortex of both WT and PPAR-α KO mice, with no difference between genotypes. The sodium-chloride cotransporter (NCC) was also decreased by angiotensin II, but significantly more in PPAR-α KO (59% WT versus 77% KO reduction from their respective vehicle-treated mice). Our results suggest that PPAR-α attenuates angiotensin II-mediated increased blood pressure potentially via reducing expression and activity of the NKA.


Assuntos
Angiotensina II/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Rim/metabolismo , PPAR alfa/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Aquaporina 1/metabolismo , Pressão Sanguínea/fisiologia , Rim/efeitos dos fármacos , Masculino , Camundongos Endogâmicos , Camundongos Knockout , PPAR alfa/metabolismo , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo
7.
Semin Nephrol ; 41(4): 331-348, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34715963

RESUMO

Diabetes is a worldwide epidemic that is increasing rapidly to become the seventh leading cause of death in the world. The increased incidence of this disease mirrors a similar uptick in obesity and metabolic syndrome, and, collectively, these conditions can cause deleterious effects on a number of organ systems including the renal and cardiovascular systems. Historically, treatment of type 2 diabetes has focused on decreasing hyperglycemia and glycated hemoglobin levels. However, it now is appreciated that there is more to the puzzle. Emerging evidence has indicated that newer classes of diabetes drugs, sodium-glucose co-transporter 2 inhibitors and glucagon-like peptide 1-receptor agonists, improve cardiovascular and renal function, while appropriately managing hyperglycemia. In this review, we highlight the recent clinical and preclinical studies that have shed light on sodium-glucose co-transporter 2 inhibitors and glucagon-like peptide 1-receptor agonists and their ability to stabilize blood glucose levels while offering whole-body protection in diabetic and nondiabetic patient populations.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes , Inibidores do Transportador 2 de Sódio-Glicose , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose , Humanos , Hipoglicemiantes/uso terapêutico , Transportador 2 de Glucose-Sódio , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
8.
Physiology (Bethesda) ; 36(4): 220-234, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34159807

RESUMO

Much excitement exists over the cardioprotective and life-extending effects of caloric restriction (CR). This review integrates population studies with experimental animal research to address the positive and negative impact of mild and severe CR on cardiovascular physiology and pathophysiology, with a particular focus on the renin-angiotensin system (RAS). We also highlight the gaps in knowledge and areas ripe for future physiological research.


Assuntos
Pressão Sanguínea/fisiologia , Restrição Calórica , Fenômenos Fisiológicos Cardiovasculares , Sistema Renina-Angiotensina/fisiologia , Animais , Sistema Cardiovascular/metabolismo , Humanos
9.
Front Physiol ; 12: 787521, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35058797

RESUMO

The mechanistic target of rapamycin (mTOR), a serine-threonine-specific kinase, is a cellular energy sensor, integrating growth factor and nutrient signaling. In the collecting duct (CD) of the kidney, the epithelial sodium channel (ENaC) essential in the determination of final urine Na+ losses, has been demonstrated to be upregulated by mTOR, using cell culture and mTOR inhibition in ex vivo preparations. We tested whether CD-principal cell (PC) targeted deletion of mTOR using Cre-lox recombination would affect whole-body sodium homeostasis, blood pressure, and ENaC regulation in mice. Male and female CD-PC mTOR knockout (KO) mice and wild-type (WT) littermates (Cre-negative) were generated using aquaporin-2 (AQP2) promoter to drive Cre-recombinase. Under basal conditions, KO mice showed a reduced (∼30%) natriuretic response to benzamil (ENaC) antagonist, suggesting reduced in vivo ENaC activity. WT and KO mice were fed normal sodium (NS, 0.45% Na+) or a very low Na+ (LS, <0.02%) diet for 7-days. Switching from NS to LS resulted in significantly higher urine sodium losses (relative to WT) in the KO with adaptation occurring by day 2. Blood pressures were modestly (∼5-10 mm Hg) but significantly lower in KO mice under both diets. Western blotting showed KO mice had 20-40% reduced protein levels of all three subunits of ENaC under LS or NS diet. Immunohistochemistry (IHC) of kidney showed enhanced apical-vs.-cellular localization of all three subunits with LS, but a reduction in this ratio for γ-ENaC in the KO. Furthermore, the KO kidneys showed increased ubiquitination of α-ENaC and reduced phosphorylation of the serum and glucocorticoid regulated kinase, type 1 [serum glucocorticoid regulated kinase (SGK1)] on serine 422 (mTOR phosphorylation site). Taken together this suggests enhanced degradation as a consequence of reduced mTOR kinase activity and downstream upregulation of ubiquitination may have accounted for the reduction at least in α-ENaC. Overall, our data support a role for mTOR in ENaC activity likely via regulation of SGK1, ubiquitination, ENaC channel turnover and apical membrane residency. These data support a role for mTOR in the collecting duct in the maintenance of body sodium homeostasis.

11.
Am J Physiol Renal Physiol ; 319(3): F476-F486, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32715758

RESUMO

miRNAs provide fine tuning of gene expression via inhibition of translation. miR-451 has a modulatory role in cell cycling via downregulation of mechanistic target of rapamycin. We aimed to test whether chronic systemic inhibition of miR-451 would enhance renal fibrosis (associated with deranged autophagy). Adult TallyHo/Jng mice (obese insulin resistant) were randomized to two treatment groups to receive either miR-451 inhibition [via a locked nucleic acid construct] or a similar scrambled locked nucleic acid control for 8 wk. All mice were fed a high-fat diet (60% kcal from fat) ad libitum and humanely euthanized after 12 wk. Kidneys and blood were collected for analysis. Renal expression of miR-451 was sixfold lower in inhibitor-treated mice compared with control mice. miR-451 inhibition increased kidney weight and collagen and glycogen deposition. Blood chemistry revealed significantly higher Na+ and anion gap (relative metabolic acidosis) in inhibitor-treated mice. Western blot analysis and immunohistochemistry of the kidney revealed that the inhibitor increased markers of renal injury and fibrosis, e.g., kidney injury molecule 1, neutrophil gelatinase-associated lipocalin, transforming growth factor-ß, 14-3-3 protein-ζ, mechanistic target of rapamycin, AMP-activated protein kinase-α, calcium-binding protein 39, matrix metallopeptidase-9, and the autophagy receptor sequestosome 1. In contrast, the inhibitor reduced the epithelial cell integrity marker collagen type IV and the autophagy markers microtubule-associated protein 1A/1B light chain 3B and beclin-1. Taken together, these results support a protective role for miR-451 in reducing renal fibrosis by enhancing autophagy in obese mice.


Assuntos
Autofagia/fisiologia , Rim/patologia , MicroRNAs/antagonistas & inibidores , Animais , Autofagia/efeitos dos fármacos , Dieta Hiperlipídica , Fibrose , Regulação da Expressão Gênica , Resistência à Insulina , Nefropatias/etiologia , Nefropatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/induzido quimicamente , Peptídeos , Distribuição Aleatória , Transdução de Sinais
12.
Cell Physiol Biochem ; 54(4): 682-695, 2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32678535

RESUMO

BACKGROUND/AIMS: Metabolic syndrome and type 2 diabetes are associated with some degree of acidosis. Acidosis has also been shown to upregulate renal gluconeogenesis. Whether impaired insulin or insulin-like-growth factor 1 receptor (IGF1) signaling alter this relationship is not known. Our aim was to determine the effects of deletion of insulin and IGF1 receptors (Insr and Igf1r) from renal proximal tubule (PT) on the gluconeogenic response to acidosis. METHODS: We developed a mouse model with PT-targeted dual knockout (KO) of the Insr/Igf1r by driving Cre-recombinase with the gamma-glutamyl transferase (gGT) promoter. Male and female mice were maintained as control or acidotic by treatment with NH4Cl in the drinking water for 1-week. RESULTS: Acidosis in both genotypes increased renal expression of phosphoenolpyruvate carboxykinase (PEPCK) and fructose-1-bisphosphatase (FBP1), but not glucose-6-phosphatase catalytic subunit (G6PC), which showed significantly lower expression in the KO regardless of treatment. Several differences between KO and WT suggested a protective role for insulin/IGF1 receptor signaling in maintaining relative euglycemia in the face of acidosis. First, the increase in FBP1 with acid was greater in the KO (significant interactive term). Secondly, proximal-tubule-associated FOXO1 and AKT overall protein levels were suppressed by acid loading in the KO, but not in the WT. Robust intact insulin signaling would be needed to reduce gluconeogenesis in PT. Third, phosphorylated FOXO1 (pS256) levels were markedly reduced by acid loading in the KO PT, but not in the WT. This reduction would support greater gluconeogenesis. Fourth, the sodium-glucose cotransporter (SGLT1) was increased by acid loading in the KO kidney, but not the WT. While this would not necessarily affect gluconeogenesis, it could result in increased circulatory glucose via renal reabsorption. Reduced susceptibility to glucose-homeostatic dysregulation in the WT could potentially relate to the sharp (over 50%) reduction in renal levels of sirtuin-1 (SIRT1), which deacetylates and regulates transcription of a number of genes. This reduction was absent in the KO. CONCLUSION: Insulin resistance of the kidney may increase whole-body glucose instability a major risk factor for morbidity in diabetes. High dietary acid loads provide a dilemma for the kidney, as ammoniagenesis liberates α-ketoglutarate, which is a substrate for gluconeogenesis. We demonstrate an important role for insulin and/or IGF1 receptor signaling in the PT to facilitate this process and reduce excursions in blood glucose. Thus, medications and lifestyle changes that improve renal insulin sensitivity may also provide added benefit in type 2 diabetes especially when coupled with metabolic acidosis.


Assuntos
Acidose Tubular Renal/metabolismo , Glucose/metabolismo , Insulina/sangue , Túbulos Renais Proximais/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Acidose Tubular Renal/enzimologia , Acidose Tubular Renal/genética , Cloreto de Amônio/administração & dosagem , Animais , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Proteína Forkhead Box O1/metabolismo , Frutose-Bifosfatase/metabolismo , Gluconeogênese/genética , Glucose-6-Fosfatase/metabolismo , Resistência à Insulina/genética , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/enzimologia , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Camundongos Knockout , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/genética , Receptor de Insulina/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-32582029

RESUMO

P2Y2, a G protein-coupled receptor (R), is expressed in all organs involved in the development of obesity and insulin resistance. To explore the role of it in diet-induced obesity, we fed male P2Y2-R whole body knockout (KO) and wild type (WT) mice (B6D2 genetic background) with regular diet (CNT; 10% calories as fat) or high-fat diet (HFD; 60% calories as fat) with free access to food and water for 16 weeks, and euthanized them. Adjusted for body weights (BW), KO mice consumed modestly, but significantly more HFD vs. WT mice, and excreted well-formed feces with no taint of fat or oil. Starting from the 2nd week, HFD-WT mice displayed significantly higher BW with terminal mean difference of 22% vs. HFD-KO mice. Terminal weights of white adipose tissue (WAT) were significantly lower in the HFD-KO vs. HFD-WT mice. The expression of P2Y2-R mRNA in WAT was increased by 2-fold in HFD-fed WT mice. Serum insulin, leptin and adiponectin levels were significantly elevated in the HFD-WT mice, but not in the HFD-KO mice. When induced in vitro, preadipocytes derived from KO mice fed regular diet did not differentiate and mature as robustly as those from the WT mice, as assessed by cellular expansion and accumulation of lipid droplets. Blockade of P2Y2-R by AR-C118925 in preadipocytes derived from WT mice prevented differentiation and maturation. Under basal conditions, KO mice had significantly higher serum triglycerides and showed slightly impaired lipid tolerance as compared to the WT mice. HFD-fed KO mice had significantly better glucose tolerance (GTT) as compared to HFD-fed WT mice. Whole body insulin sensitivity and mRNA expression of insulin receptor, IRS-1 and GLUT4 in WAT was significantly higher in HFD-fed KO mice vs. HFD-fed WT mice. On the contrary, the expression of pro-inflammatory molecules MCP-1, CCR2, CD68, and F4/80 were significantly higher in the WAT of HFD-fed WT vs. HFD-fed KO mice. These data suggest that P2Y2-R plays a significant role in the development of diet-induced obesity by promoting adipogenesis and inflammation, and altering the production of adipokines and lipids and their metabolism in adipose tissue, and thereby facilitates HFD-induced insulin resistance.


Assuntos
Tecido Adiposo/patologia , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Obesidade/patologia , Receptores Purinérgicos P2Y2/fisiologia , Tecido Adiposo/metabolismo , Animais , Ingestão de Energia , Masculino , Camundongos , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Transdução de Sinais
14.
Front Physiol ; 11: 234, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322216

RESUMO

Micro-RNAs (miRs) encapsulated inside urinary exosomes (uEs) have the potential as early biomarkers. Previously, we reported that a rise in uE miR-451 predicted albuminuria in diabetic rats; however, whether the rise was protective or detrimental, and occurred in response to injury or general hyperglycemia, was unknown. To address this, we studied both human and rat models of renal disease. In humans, uE miR-451 was approximately twofold higher in subjects with early-stage chronic kidney disease (CKD; serum creatinine < 2.0 mg/dl; n = 28), as compared to age-matched healthy controls (n = 23), and had a significant negative correlation with estimated glomerular filtration rate (eGFR) (r 2 = -0.10, p = 0.01). Subgroup analysis of CKD subjects showed that those without diabetes had slightly (∼30%) but significantly higher uE miR-451 as compared to those with diabetes, with no differences in albumin excretion, eGFR, serum sodium, and potassium. Using human proximal tubule (hPT) cells, we found that locked nucleic acid (LNA) inhibition of miR-451 resulted in a significant increase in the messenger RNA (mRNA) expression of kidney-injury-associated miR-451 targets, e.g., CAB39, TBX1, and YWHAZ, as compared to treatment with a control LNA. Moreover, hPT cells and their secreted exosomes showed an increase in miR-451 in response to mechanical injury but not high glucose (20 versus 5 mM). For further proof of concept, in diabetic rats, we showed that atorvastatin (AT), a treatment proven to attenuate renal injury without affecting systemic glucose levels, reduced uE miR-451 with the concomitant restoration of renal miR-451. These data elucidate the stimuli for renal miR-451 expression and exosomal release and support its role as a therapeutic target and early biomarker for renal injury in humans.

15.
Kidney Int ; 97(2): 256-258, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31980073

RESUMO

Insulin has many varied actions in the proximal tubule. Two distinct activities include upregulation of sodium/bicarbonate reabsorption and downregulation of gluconeogenesis. The inability to perform these 2 tasks simultaneously under fed and fasted conditions can lead to hyper- or hypoglycemia, acidosis, and/or impaired extracellular fluid regulation. Nakamura and colleagues illuminate our understanding of this process, which appears to be managed in part by recruitment of different insulin receptor substrates under different physiological conditions.


Assuntos
Gluconeogênese , Insulina , Animais , Bicarbonatos , Humanos , Túbulos Renais Proximais , Ratos , Sódio
16.
J Cell Biochem ; 120(6): 10688-10696, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30644120

RESUMO

The contribution of proximal tubules (PT) to albumin uptake is now well recognized, however, its regulation is understudied area. There are reports suggesting that insulin resistance is associated with the development of albuminuria in nondiabetic individuals. We have previously reported reduced insulin receptor (IR) expression in renal-tubular-epithelial cells, including PT in various models of insulin resistance. However, the effect of a physiological fall in insulin levels and the role for IR in PT in tubular albumin uptake is not clear. To address these gaps in our understanding, we estimated urine excretion and renal uptake of albumin in fasted and fed C57Bl/6 mice injected with fluorescein isothiocyanate (FITC)-albumin (5 µg/mL/kg body weight, intraperitoneal, n = 6 per group). In addition, we compared spot urine analysis from 33 clinically healthy humans after overnight fasting (when insulin levels are lower than in the fed state) and then at 2 hours after 75 g oral glucose challenge (postprandial). Fasted mice had attenuated renal uptake of FITC-albumin and higher excretion in urine, relative to fed mice ( P = 0.04). Moreover, a significant drop in urine albumin-to-creatinine ratio (ACR) and urine albumin concentration (UAC) was observed in the postprandial state in these subjects ( P = 0.001 and P = 0.017, for ACR and UAC, respectively). The drop was negatively associated with postprandial blood glucose levels (ρ = -0.36, P = 0.03 for ΔUAC and ρ = -0.34, P = 0.05 for ΔACR). To test the role of IR in PT, we analyzed 24-hour urine albumin excretion in male mice with targeted deletion of IR from PT (insulin receptor knockout [IRKO]) and their wild-type (WT) littermates ( n = 7 per group). IRKO mice had significantly higher 24-hour urine albumin excretion relative to WT. Moreover, kidneys from KO mice revealed reduced expression of megalin and cubulin proteins in the PT relative to the WT. We also demonstrated insulin (100 nM) induced albumin internalization in human proximal tubule cells (hPT) and this effect of insulin was attenuated in hydroxy-2-naphthalenylmethylphosphonic acid (100 µM), a tyrosine kinase inhibitor, pretreated hPT. Our findings revealed albumin excretion was attenuated by glucose administration to fasting individuals implying a regulatory role for insulin in PT albumin reabsorption. Thus albuminuria associated with insulin resistance/diabetes may relate not only to glomerular dysfunction but also to impairment in insulin-mediated reabsorption.


Assuntos
Albuminúria/genética , Células Epiteliais/metabolismo , Insulina/metabolismo , Túbulos Renais Proximais/metabolismo , Receptor de Insulina/genética , Albuminúria/metabolismo , Albuminúria/fisiopatologia , Animais , Creatinina/urina , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Jejum/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Glucose/farmacologia , Teste de Tolerância a Glucose , Humanos , Insulina/farmacologia , Resistência à Insulina , Túbulos Renais Proximais/fisiopatologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Naftalenos/farmacologia , Organofosfonatos/farmacologia , Cultura Primária de Células , Receptor de Insulina/deficiência , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Albumina Sérica/metabolismo
17.
Int J Mol Sci ; 19(10)2018 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-30249002

RESUMO

Insulin therapy is often needed to overcome insulin receptor resistance in type 2 diabetes; however, the impact of providing additional insulin to already hyperinsulinemic subjects is not clear. We infused male TALLYHO/Jng (TH) mice (insulin resistant) with insulin (50 U/kg·bw/d) or vehicle (control) by osmotic minipump for 14 days. One group of insulin-infused mice was switched to 4% NaCl diet (high-sodium diet, HSD) in the second week. Blood chemistry revealed a significantly higher anion gap and blood sodium concentrations with insulin infusion, i.e., relative metabolic acidosis. Systolic BP and heart rate were slightly (~5 mm Hg) higher in insulin-infused versus control mice. HSD resulted in a modest and transient rise in mean arterial blood pressure (BP), relative to control or insulin-infused, normal-NaCl-fed mice. In kidney, insulin infusion: (1) increased total and phosphorylated (serine-1177) endothelial nitric oxide synthase (eNOS) band densities; (2) reduced band density of the uncoupled form of eNOS; and (3) increased renal homogenate nitric oxide synthase (NOS) activity. Despite this, plasma and urine levels of nitrates plus nitrites (NOx) fell with insulin infusion, by day 14 (40⁻50%) suggesting worsening of resistance. Overall, insulin infusion ramps up the cellular means in kidney to increase vasodilatory and natriuretic NO, but in the long term may be associated with worsening of insulin receptor resistance.


Assuntos
Regulação Enzimológica da Expressão Gênica , Resistência à Insulina , Insulina/administração & dosagem , Rim/fisiopatologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/sangue , Óxido Nítrico/urina , Animais , Frequência Cardíaca , Hipoglicemiantes/administração & dosagem , Infusões Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Am J Physiol Renal Physiol ; 315(3): F413-F416, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29846113

RESUMO

The renal collecting duct and other postmacula densa sites are the primary tubular regions for fine-tuning of electrolyte homeostasis in the body. A role for the mechanistic target of rapamycin (mTOR), a serine-threonine kinase, has recently been appreciated in this regulation. mTOR exists in two distinct multiprotein functional complexes, i.e., mTORC1 and mTORC2. Upregulation of mTORC1, by growth factors and amino acids, is associated with cell cycle regulation and hypertrophic changes. In contrast, mTORC2 has been demonstrated to have a role in regulating Na+ and K+ reabsorptive processes, including those downstream of insulin and serum- and glucocorticoid-regulated kinase (SGK). In addition, mTORC2 can upregulate mTORC1. A number of elegant in vitro and in vivo studies using cell systems and genetically modified mice have revealed mechanisms underlying activation of the epithelial Na+ channel (ENaC) and the renal outer medullary K+ channel (ROMK) by mTORC2. Overall, mTOR in its systematic integration of phosphorylative signaling facilitates the delicate balance of whole body electrolyte homeostasis in the face of changes in metabolic status. Thus, inappropriate regulation of renal mTOR has the potential to result in electrolyte disturbances, such as acidosis/alkalosis, hyponatremia, and hypertension. The goal of this minireview is to highlight the physiological role of mTOR in its complexes in regulating electrolyte homeostasis in the aldosterone-sensitive distal nephron.


Assuntos
Aminoácidos/metabolismo , Proteínas Alimentares/metabolismo , Eletrólitos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Túbulos Renais Coletores/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Cloretos/metabolismo , Eletrólitos/urina , Humanos , Capacidade de Concentração Renal , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fosforilação , Potássio/metabolismo , Eliminação Renal , Reabsorção Renal , Sódio/metabolismo , Serina-Treonina Quinases TOR/genética
20.
Kidney Int ; 93(1): 128-146, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28843412

RESUMO

In the syndrome of inappropriate antidiuretic hormone secretion (SIADH), hyponatremia is limited by onset of vasopressin-escape caused by loss of the water channel aquaporin-2 in the renal collecting duct despite high circulating vasopressin. Here, we use the methods of systems biology in a well-established rat model of SIADH to identify signaling pathways activated at the onset of vasopressin-escape. Using single-tubule RNA-Seq, full transcriptomes were determined in microdissected cortical collecting ducts of vasopressin-treated rats at 1, 2, and 4 days after initiation of oral water loading in comparison to time-control rats without water loading. The time-dependent mRNA abundance changes were mapped to gene sets associated with curated canonical signaling pathways and revealed evidence of perturbation of transforming growth factor ß signaling and epithelial-to-mesenchymal transition on Day 1 of water loading simultaneous with the initial fall in Aqp2 gene expression. On Day 2 of water loading, transcriptomic changes mapped to Notch signaling and the transition from G0 into the cell cycle but arrest at the G2/M stage. There was no evidence of cell proliferation or altered principal or intercalated cell numbers. Exposure of vasopressin-treated cultured mpkCCD cells to transforming growth factor ß resulted in a virtually complete loss of aquaporin-2. Thus, there is a partial epithelial-to-mesenchymal transition during vasopressin escape with a subsequent shift from quiescence into the cell cycle with eventual arrest and loss of aquaporin-2.


Assuntos
Perfilação da Expressão Gênica/métodos , Hiponatremia/prevenção & controle , Síndrome de Secreção Inadequada de HAD/genética , Túbulos Renais Coletores/metabolismo , RNA Mensageiro/genética , Análise de Sequência de RNA , Transdução de Sinais/genética , Biologia de Sistemas/métodos , Animais , Aquaporina 2/genética , Aquaporina 2/metabolismo , Proliferação de Células/genética , Células Cultivadas , Senescência Celular/genética , Desamino Arginina Vasopressina , Modelos Animais de Doenças , Ingestão de Líquidos , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica , Hiponatremia/etiologia , Hiponatremia/genética , Hiponatremia/metabolismo , Síndrome de Secreção Inadequada de HAD/induzido quimicamente , Síndrome de Secreção Inadequada de HAD/metabolismo , Masculino , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptores Notch/genética , Receptores Notch/metabolismo , Fatores de Tempo , Transcrição Gênica , Transcriptoma , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...