Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31119103

RESUMO

Vibrio spp. are highly motile Gram-negative bacteria, ubiquitously found in aquatic environments. Some Vibrios are responsible for disease and morbidity of marine invertebrates and humans, while others are studied for their symbiotic interactions. Vibrio spp. are motile due to synthesis of flagella that rotate and propel the bacteria. Many Vibrio spp. synthesize monotrichous polar flagella (e.g., V. cholerae, V. alginolyticus); however, some synthesize peritrichous or lophotrichous flagella. Flagellar-mediated motility is intimately connected to biological and cellular processes such as chemotaxis, biofilm formation, colonization, and virulence of Vibrio spp. This review focuses on the polar flagellum and its regulation in regard to Vibrio virulence and environmental persistence.


Assuntos
Flagelos/metabolismo , Biogênese de Organelas , Vibrio/metabolismo
2.
Genome Announc ; 6(9)2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29496831

RESUMO

Vibrio cholerae is a Gram-negative waterborne human pathogen and the causative agent of cholera. Here, we present the complete genome sequence of the seventh pandemic O1 biovar El Tor Inaba strain A1552 isolated in 1992. This clinical strain has served as an important model strain for studying cholera pathogenicity traits.

3.
J Bacteriol ; 200(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29581407

RESUMO

Vibrio cholerae is a Gram-negative bacterium with a monotrichous flagellum that causes the human disease cholera. Flagellum-mediated motility is an integral part of the bacterial life cycle inside the host and in the aquatic environment. The V. cholerae flagellar filament is composed of five flagellin subunits (FlaA, FlaB, FlaC, FlaD, and FlaE); however, only FlaA is necessary and sufficient for filament synthesis. flaA is transcribed from a class III flagellar promoter, whereas the other four flagellins are transcribed from class IV promoters. However, expressing flaA from a class IV promoter still facilitated motility in a strain that was otherwise lacking all five flagellins (ΔflaA-E). Furthermore, FlaA from V. parahaemolyticus (FlaAVP; 77% identity) supported motility of the V. cholerae ΔflaA-E strain, whereas FlaA from V. vulnificus (FlaAVV; 75% identity) did not, indicating that FlaA amino acid sequence is responsible for its critical role in flagellar synthesis. Chimeric proteins composed of different domains of FlaAVC and FlaD or FlaAVV revealed that the N-terminal D1 domain (D1N) contains an important region required for FlaA function. Further analyses of chimeric FlaAVC-FlaD proteins identified a lysine residue present at position 145 of the other flagellins but absent from FlaAVC that can prevent monofilament formation. Moreover, the D1N region of amino acids 87 to 153 of FlaAVV inserted into FlaAVC allows monofilament formation but not motility, apparently due to the lack of filament curvature. These results identify residues within the D1N domain that allow FlaAVC to fold into a functional filament structure and suggest that FlaAVC assists correct folding of the other flagellins.IMPORTANCEV. cholerae causes the severe diarrheal disease cholera. Its ability to swim is mediated by rotation of a polar flagellum, and this motility is integral to its ability to cause disease and persist in the environment. The current studies illuminate how one specific flagellin (FlaA) within a multiflagellin structure mediates formation of the flagellar filament, thus allowing V. cholerae to swim. This knowledge can lead to safer vaccines and potential therapeutics to inhibit cholera.


Assuntos
Flagelos/metabolismo , Flagelina/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Vibrio cholerae/fisiologia , Sequência de Aminoácidos , Citoesqueleto , Flagelos/genética , Flagelina/genética , Modelos Moleculares , Regiões Promotoras Genéticas , Conformação Proteica , Vibrio cholerae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...