Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plant Genome ; : e20413, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087443

RESUMO

Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a major wheat disease worldwide. A collection of 283 wild emmer wheat [Triticum turgidum L. subsp. dicoccoides (Körn. ex Asch. & Graebn.) Thell] accessions, representative of the entire Fertile Crescent region where wild emmer naturally occurs, was assembled, genotyped, and characterized for population structure, genetic diversity, and rate of linkage disequilibrium (LD) decay. Then, the collection was employed for mapping Pgt resistance genes, as a proof of concept of the effectiveness of genome-wide association studies in wild emmer. The collection was evaluated in controlled conditions for reaction to six common Pgt pathotypes (TPMKC, TTTTF, JRCQC, TRTTF, TTKSK/Ug99, and TKTTF). Most resistant accessions originated from the Southern Levant wild emmer lineage, with some showing a resistance reaction toward three to six tested races. Association analysis was conducted considering a 12K polymorphic single-nucleotide polymorphisms dataset, kinship relatedness between accessions, and population structure. Eleven significant marker-trait associations (MTA) were identified across the genome, which explained from 17% to up to 49% of phenotypic variance with an average 1.5 additive effect (based on the 1-9 scoring scale). The identified loci were either effective against single or multiple races. Some MTAs colocalized with known Pgt resistance genes, while others represent novel resistance loci useful for durum and bread wheat prebreeding. Candidate genes with an annotated function related to plant response to pathogens were identified at the regions linked to the resistance and defined according to the estimated small LD (about 126 kb), as typical of wild species.

2.
Front Plant Sci ; 14: 1133986, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36993842

RESUMO

Introduction: In Eragrostis curvula, commonly known as weeping lovegrass, a synthetic diploidization event of the facultative apomictic tetraploid Tanganyika INTA cv. originated from the sexual diploid Victoria cv. Apomixis is an asexual reproduction by seeds in which the progeny is genetically identical to the maternal plant. Methods: To assess the genomic changes related to ploidy and to the reproductive mode occurring during diploidization, a mapping approach was followed to obtain the first E. curvula pangenome assembly. In this way, gDNA of Tanganyika INTA was extracted and sequenced in 2x250 Illumina pair-end reads and mapped against the Victoria genome assembly. The unmapped reads were used for variant calling, while the mapped reads were assembled using Masurca software. Results: The length of the assembly was 28,982,419 bp distributed in 18,032 contigs, and the variable genes annotated in these contigs rendered 3,952 gene models. Functional annotation of the genes showed that the reproductive pathway was differentially enriched. PCR amplification in gDNA and cDNA of Tanganyika INTA and Victoria was conducted to validate the presence/absence variation in five genes related to reproduction and ploidy. The polyploid nature of the Tanganyika INTA genome was also evaluated through the variant calling analysis showing the single nucleotide polymorphism (SNP) coverage and allele frequency distribution with a segmental allotetraploid pairing behavior. Discussion: The results presented here suggest that the genes were lost in Tanganyika INTA during the diploidization process that was conducted to suppress the apomictic pathway, affecting severely the fertility of Victoria cv.

3.
Front Plant Sci ; 13: 1012682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247597

RESUMO

Weeping lovegrass (Eragrostis curvula [Shrad.] Nees) is a perennial grass typically established in semi-arid regions, with good adaptability to dry conditions and sandy soils. This polymorphic complex includes both sexual and apomictic cytotypes, with different ploidy levels (2x-8x). Diploids are known to be sexual, while most polyploids are facultative apomicts, and full apomicts have also been reported. Plant breeding studies throughout the years have focused on achieving the introgression of apomixis into species of agricultural relevance, but, given the complexity of the trait, a deeper understanding of the molecular basis of regulatory mechanisms of apomixis is still required. Apomixis is thought to be associated with silencing or disruption of the sexual pathway, and studies have shown it is influenced by epigenetic mechanisms. In a previous study, we explored the role of miRNA-mRNA interactions using two contrasting E. curvula phenotypes. Here, the sexual OTA-S, the facultative Don Walter and the obligate apomictic Tanganyika cDNA and sRNA libraries were inquired, searching for miRNA discovery and miRNA expression regulation of genes related to the reproductive mode. This allowed for the characterization of seven miRNAs and the validation of their miRNA-target interactions. Interestingly, a kinesin gene was found to be repressed in the apomictic cultivar Tanganyika, targeted by a novel miRNA that was found to be overexpressed in this genotype, suggestive of an involvement in the reproductive mode expression. Our work provided additional evidence of the contribution of the epigenetic regulation of the apomictic pathway.

4.
Sci Rep ; 12(1): 9629, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688907

RESUMO

Exploring the genetic variability in yield and yield-related traits is essential to continue improving genetic gains. Fifty-nine Argentinian durum wheat cultivars were analyzed for important agronomic traits in three field experiments. The collection was genotyped with 3565 genome-wide SNPs and functional markers in order to determine the allelic variation at Rht-B1 and Ppd-A1 genes. Population structure analyses revealed the presence of three main groups, composed by old, modern and genotypes with European or CIMMYT ancestry. The photoperiod sensitivity Ppd-A1b allele showed higher frequency (75%) than the insensitivity one Ppd-A1a (GS105). The semi-dwarfism Rht-B1b and the Ppd-A1a (GS105) alleles were associated with increases in harvest index and decreases in plant height, grain protein content and earlier heading date, although only the varieties carrying the Rht-B1 variants showed differences in grain yield. Out of the two main yield components, grain number per plant was affected by allelic variants at Rht-B1 and Ppd-A1 loci, while no differences were observed in thousand kernel weight. The increases in grain number per spike associated with Rht-B1b were attributed to a higher grain number per spikelet, whereas Ppd-A1a (GS105) was associated with higher grain number per spikelet, but also with lower spikelets per spike.


Assuntos
Genes de Plantas , Triticum , Alelos , Grão Comestível/genética , Genótipo , Fenótipo , Triticum/genética
5.
Front Plant Sci ; 12: 768393, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804102

RESUMO

The available methods for plant transformation and expansion beyond its limits remain especially critical for crop improvement. For grass species, this is even more critical, mainly due to drawbacks in in vitro regeneration. Despite the existence of many protocols in grasses to achieve genetic transformation through Agrobacterium or biolistic gene delivery, their efficiencies are genotype-dependent and still very low due to the recalcitrance of these species to in vitro regeneration. Many plant transformation facilities for cereals and other important crops may be found around the world in universities and enterprises, but this is not the case for apomictic species, many of which are C4 grasses. Moreover, apomixis (asexual reproduction by seeds) represents an additional constraint for breeding. However, the transformation of an apomictic clone is an attractive strategy, as the transgene is immediately fixed in a highly adapted genetic background, capable of large-scale clonal propagation. With the exception of some species like Brachiaria brizantha which is planted in approximately 100 M ha in Brazil, apomixis is almost non-present in economically important crops. However, as it is sometimes present in their wild relatives, the main goal is to transfer this trait to crops to fix heterosis. Until now this has been a difficult task, mainly because many aspects of apomixis are unknown. Over the last few years, many candidate genes have been identified and attempts have been made to characterize them functionally in Arabidopsis and rice. However, functional analysis in true apomictic species lags far behind, mainly due to the complexity of its genomes, of the trait itself, and the lack of efficient genetic transformation protocols. In this study, we review the current status of the in vitro culture and genetic transformation methods focusing on apomictic grasses, and the prospects for the application of new tools assayed in other related species, with two aims: to pave the way for discovering the molecular pathways involved in apomixis and to develop new capacities for breeding purposes because many of these grasses are important forage or biofuel resources.

6.
Foods ; 10(11)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34829126

RESUMO

Durum wheat grains (Triticum turgidum L. ssp. durum) are the main source for the production of pasta, bread and a variety of products consumed worldwide. The quality of pasta is mainly defined by the rheological properties of gluten, an elastic network in wheat endosperms formed of gliadins and glutenins. In this study, the allelic variation at five glutenin loci was analysed in 196 durum wheat genotypes. Two loci (Glu-A1 and Glu-B1), encoding for high-molecular-weight glutenin subunits (HMW-GS), and three loci (Glu-B2, Glu-A3 and Glu-B3), encoding for low molecular weight glutenin subunits (LMW-GS), were assessed by SDS-PAGE. The SDS-sedimentation test was used and the grain protein content was evaluated. A total of 32 glutenin subunits and 41 glutenin haplotypes were identified. Four novel alleles were detected. Fifteen haplotypes represented 85.7% of glutenin loci variability. Some haplotypes carrying the 7 + 15 and 7 + 22 banding patterns at Glu-B1 showed a high gluten strength similar to those that carried the 7 + 8 or 6 + 8 alleles. A decreasing trend in grain protein content was observed over the last 85 years. Allelic frequencies at the three main loci (Glu-B1, Glu-A3 and Glu-B3) changed over the 1915-2020 period. Gluten strength increased from 1970 to 2020 coinciding with the allelic changes observed. These results offer valuable information for glutenin haplotype-based selection for use in breeding programs.

7.
Plants (Basel) ; 10(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34579351

RESUMO

Eragrostis curvula (Schrad.) Ness is a grass with a particular apomictic embryo sac development called Eragrostis type. Apomixis is a type of asexual reproduction that produces seeds without fertilization in which the resulting progeny is genetically identical to the mother plant and with the potential to fix the hybrid vigour from more than one generation, among other advantages. The absence of meiosis and the occurrence of only two rounds of mitosis instead of three during embryo sac development make this model unique and suitable to be transferred to economically important crops. Throughout this review, we highlight the advances in the knowledge of apomixis in E. curvula using different techniques such as cytoembryology, DNA methylation analyses, small-RNA-seq, RNA-seq, genome assembly, and genotyping by sequencing. The main bulk of evidence points out that apomixis is inherited as a single Mendelian factor, and it is regulated by genetic and epigenetic mechanisms controlled by a complex network. With all this information, we propose a model of the mechanisms involved in diplosporous apomixis in this grass. All the genetic and epigenetic resources generated in E. curvula to study the reproductive mode changed its status from an orphan to a well-characterised species.

8.
Plants (Basel) ; 10(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068493

RESUMO

DNA methylation is an epigenetic mechanism by which a methyl group is added to a cytosine or an adenine. When located in a gene/regulatory sequence it may repress or de-repress genes, depending on the context and species. Eragrostis curvula is an apomictic grass in which facultative genotypes increases the frequency of sexual pistils triggered by epigenetic mechanisms. The aim of the present study was to look for correlations between the reproductive mode and specific methylated genes or genomic regions. To do so, plants with contrasting reproductive modes were investigated through MCSeEd (Methylation Context Sensitive Enzyme ddRad) showing higher levels of DNA methylation in apomictic genotypes. Moreover, an increased proportion of differentially methylated positions over the regulatory regions were observed, suggesting its possible role in regulation of gene expression. Interestingly, the methylation pathway was also found to be self-regulated since two of the main genes (ROS1 and ROS4), involved in de-methylation, were found differentially methylated between genotypes with different reproductive behavior. Moreover, this work allowed us to detect several genes regulated by methylation that were previously found as differentially expressed in the comparisons between apomictic and sexual genotypes, linking DNA methylation to differences in reproductive mode.

9.
Plants (Basel) ; 10(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802754

RESUMO

These proceedings contain the abstracts for the presentations given at the 7th biennial Seminars on Advances in Apomixis Research, held virtually on 2-3 and 9 December 2020. The first day hosted the kick-off meeting of the EU-funded Mechanisms of Apomictic Development (MAD) project, while the remaining days were dedicated to oral presentations and in-depth exchanges on the latest progress in the field of apomixis and plant reproductive biology research.

10.
BMC Genomics ; 22(1): 233, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33820546

RESUMO

BACKGROUND: Durum wheat (Triticum turgidum L. ssp. durum Desf. Husn) is the main staple crop used to make pasta products worldwide. Under the current climate change scenarios, genetic variability within a crop plays a crucial role in the successful release of new varieties with high yields and wide crop adaptation. In this study we evaluated a durum wheat collection consisting of 197 genotypes that mainly comprised a historical set of Argentinian germplasm but also included worldwide accessions. RESULTS: We assessed the genetic diversity, population structure and linkage disequilibrium (LD) patterns in this collection using a 35 K SNP array. The level of polymorphism was considered, taking account of the frequent and rare allelic variants. A total of 1547 polymorphic SNPs was located within annotated genes. Genetic diversity in the germplasm collection increased slightly from 1915 to 2010. However, a reduction in genetic diversity using SNPs with rare allelic variants was observed after 1979. However, larger numbers of rare private alleles were observed in the 2000-2009 period, indicating that a high reservoir of rare alleles is still present among the recent germplasm in a very low frequency. The percentage of pairwise loci in LD in the durum genome was low (13.4%) in our collection. Overall LD and the high (r2 > 0.7) or complete (r2 = 1) LD presented different patterns in the chromosomes. The LD increased over three main breeding periods (1915-1979, 1980-1999 and 2000-2020). CONCLUSIONS: Our results suggest that breeding and selection have impacted differently on the A and B genomes, particularly on chromosome 6A and 2A. The collection was structured in five sub-populations and modern Argentinian accessions (cluster Q4) which were clearly differentiated. Our study contributes to the understanding of the complexity of Argentinian durum wheat germplasm and to derive future breeding strategies enhancing the use of genetic diversity in a more efficient and targeted way.


Assuntos
Melhoramento Vegetal , Triticum , Alelos , Variação Genética , Genótipo , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Triticum/genética
11.
Genes (Basel) ; 11(9)2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825586

RESUMO

Eragrostis curvula presents mainly facultative genotypes that reproduce by diplosporous apomixis, retaining a percentage of sexual pistils that increase under drought and other stressful situations, indicating that some regulators activated by stress could be affecting the apomixis/sexual switch. Water stress experiments were performed in order to associate the increase in sexual embryo sacs with the differential expression of genes in a facultative apomictic cultivar using cytoembryology and RNA sequencing. The percentage of sexual embryo sacs increased from 4 to 24% and 501 out of the 201,011 transcripts were differentially expressed (DE) between control and stressed plants. DE transcripts were compared with previous transcriptomes where apomictic and sexual genotypes were contrasted. The results point as candidates to transcripts related to methylation, ubiquitination, hormone and signal transduction pathways, transcription regulation and cell wall biosynthesis, some acting as a general response to stress and some that are specific to the reproductive mode. We suggest that a DNA glycosylase EcROS1-like could be demethylating, thus de-repressing a gene or genes involved in the sexuality pathways. Many of the other DE transcripts could be part of a complex mechanism that regulates apomixis and sexuality in this grass, the ones in the intersection between control/stress and apo/sex being the strongest candidates.


Assuntos
Apomixia , Eragrostis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Transcriptoma , Secas , Eragrostis/fisiologia , Proteínas de Plantas/genética , Análise de Sequência de RNA , Estresse Fisiológico
12.
Front Plant Sci ; 11: 569905, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33408724

RESUMO

Representative, broad and diverse collections are a primary resource to dissect genetic diversity and meet pre-breeding and breeding goals through the identification of beneficial alleles for target traits. From 2,500 tetraploid wheat accessions obtained through an international collaborative effort, a Global Durum wheat Panel (GDP) of 1,011 genotypes was assembled that captured 94-97% of the original diversity. The GDP consists of a wide representation of Triticum turgidum ssp. durum modern germplasm and landraces, along with a selection of emmer and primitive tetraploid wheats to maximize diversity. GDP accessions were genotyped using the wheat iSelect 90K SNP array. Among modern durum accessions, breeding programs from Italy, France and Central Asia provided the highest level of genetic diversity, with only a moderate decrease in genetic diversity observed across nearly 50 years of breeding (1970-2018). Further, the breeding programs from Europe had the largest sets of unique alleles. LD was lower in the landraces (0.4 Mbp) than in modern germplasm (1.8 Mbp) at r 2 = 0.5. ADMIXTURE analysis of modern germplasm defined a minimum of 13 distinct genetic clusters (k), which could be traced to the breeding program of origin. Chromosome regions putatively subjected to strong selection pressure were identified from fixation index (F st ) and diversity reduction index (DRI) metrics in pairwise comparisons among decades of release and breeding programs. Clusters of putative selection sweeps (PSW) were identified as co-localized with major loci controlling phenology (Ppd and Vrn), plant height (Rht) and quality (gliadins and glutenins), underlining the role of the corresponding genes as driving elements in modern breeding. Public seed availability and deep genetic characterization of the GDP make this collection a unique and ideal resource to identify and map useful genetic diversity at loci of interest to any breeding program.

13.
Breed Sci ; 70(5): 558-566, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33603552

RESUMO

Agricultural expansion requires the deployment of stress-tolerant crops like safflower (Carthamus tinctorius L.). In safflower breeding, oil improvement in early generations requires indirect selection through simply inherited traits. The oil quality is mostly related to the fatty acid profile, which is determined by the OL locus. The aim of this research was to identify simple easy-to-measure traits that indirectly explain oil content variation and its interaction with yield components, and also to generate an effective tool for genotyping the OL locus. A field experiment with F5 and pure lines was carried out to correlate the oil content with 18 traits including yield components, and phenological and morphological characteristics. KASP technology using primers designed according to the ctFAD2-1 gene sequence was applied for OL locus genotyping and validated through fatty acids phenotyping. Hull content, the length:width ratio of the grain, and plant height were identified as the most promising selection tools for increasing oil content, and grains per capitulum was the best yield component for increasing yield without decreasing the oil content. KASP genotyping successfully worked as a MAS tool, identifying oleic and linoleic genotypes. These tools enhance options for improving oil content and quality for safflower breeding.

14.
BMC Genomics ; 20(1): 839, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718556

RESUMO

BACKGROUND: Weeping lovegrass (Eragrostis curvula [Shrad.] Nees) is a perennial grass found in semi-arid regions that is well adapted for growth in sandy soils and drought conditions. E. curvula constitutes a polymorphic complex that includes cytotypes with different ploidy levels (from 2x to 8x), where most polyploids are facultative apomicts, although both sexual reproduction and full apomixis have been reported in this species. Apomixis is thought to be associated with silencing of the sexual pathway, which would involve epigenetic mechanisms. However, a correlation between small RNAs and apomixis has not yet been conclusively established. RESULTS: Aiming to contribute to the elucidation of their role in the expression of apomixis, we constructed small RNA libraries from sexual and apomictic E. curvula genotypes via Illumina technology, characterized the small RNA populations, and conducted differential expression analysis by comparing these small RNAs with the E. curvula reference transcriptome. We found that the expression of two genes is repressed in the sexual genotype, which is associated with specific microRNA expression. CONCLUSION: Our results support the hypothesis that in E. curvula the expression of apomixis leads to sexual repression.


Assuntos
Eragrostis/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/metabolismo , Sequência de Bases , Sequência Conservada , Epigênese Genética , Eragrostis/metabolismo , Genótipo , MicroRNAs/química , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Reprodução/genética , Reprodução Assexuada/genética
15.
Front Plant Sci ; 10: 918, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354781

RESUMO

Eragrostis curvula (Schrad.) Nees (weeping lovegrass) is an apomictic species native to Southern Africa that is used as forage grass in semiarid regions of Argentina. Apomixis is a mechanism for clonal propagation through seeds that involves the avoidance of meiosis to generate an unreduced embryo sac (apomeiosis), parthenogenesis, and viable endosperm formation in a fertilization-dependent or -independent manner. Here, we constructed the first saturated linkage map of tetraploid E. curvula using both traditional (AFLP and SSR) and high-throughput molecular markers (GBS-SNP) and identified the locus controlling diplospory. We also identified putative regulatory regions affecting the expressivity of this trait and syntenic relationships with genomes of other grass species. We obtained a tetraploid mapping population from a cross between a full sexual genotype (OTA-S) with a facultative apomictic individual of cv. Don Walter. Phenotypic characterization of F1 hybrids by cytoembryological analysis yielded a 1:1 ratio of apomictic vs. sexual plants (34:27, X 2 = 0.37), which agrees with the model of inheritance of a single dominant genetic factor. The final number of markers was 1,114 for OTA-S and 2,019 for Don Walter. These markers were distributed into 40 linkage groups per parental genotype, which is consistent with the number of E. curvula chromosomes (containing 2 to 123 markers per linkage group). The total length of the OTA-S map was 1,335 cM, with an average marker density of 1.22 cM per marker. The Don Walter map was 1,976.2 cM, with an average marker density of 0.98 cM/marker. The locus responsible for diplospory was mapped on Don Walter linkage group 3, with other 65 markers. QTL analyses of the expressivity of diplospory in the F1 hybrids revealed the presence of two main QTLs, located 3.27 and 15 cM from the diplospory locus. Both QTLs explained 28.6% of phenotypic variation. Syntenic analysis allowed us to establish the groups of homologs/homeologs for each linkage map. The genetic linkage map reported in this study, the first such map for E. curvula, is the most saturated map for the genus Eragrostis and one of the most saturated maps for a polyploid forage grass species.

16.
PLoS One ; 14(6): e0218562, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31251752

RESUMO

The aim of this work was to analyze the genetic diversity and linkage disequilibrium in a collection of 168 durum wheat accessions (Triticum turgidum L. var. durum) of different origins. Our collection was mainly composed of released and unreleased Argentinian germplasm, with additional genotypes from Italy, Chile, France, CIMMYT, Cyprus, USA and WANA region. To this end, the entire collection was characterized with 85 Single Nucleotide Polymorphism (SNP) markers obtained by Kompetitive Allele Specific PCR (KASP), giving a heterozygosity (He) mean value of 0.183 and a coefficient of genetic differentiation (Gst) value of 0.139. A subset of 119 accessions was characterized with six Amplified Fragment Length Polymorphism (AFLP) primer combinations. A total of 181 polymorphic markers (125 AFLP and 56 SNP) amplified across this subset revealed He measures of 0.352 and 0.182, respectively. Of these, 134 were selected to estimate the genome-wide linkage disequilibrium obtaining low significant values (r2 = 0.11) in the subset, indicating its suitability for future genome-wide association studies (GWAS). The structure analysis conducted in the entire collection with SNP detected two subpopulations. However, the structure analysis conducted with AFLP markers in the subset of 119 accessions proved to have greater degree of resolution and detect six subpopulations. The information provided by both marker types was complementary and showed a strong association between old Argentinian and Italian germplasm and a contribution of CIMMYT germplasm to modern Argentinian, Chilean and Cypriot accessions. The influence of Mediterranean germplasm, mainly from Italy, on part of the modern Argentinian cultivars or breeding lines was also clearly evidenced. Although our analysis yields conclusive results and useful information for association mapping studies, further analyses are needed to refine the number of subpopulations present in the germplasm collection analyzed.


Assuntos
Variação Genética , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Triticum/classificação , Triticum/genética , Alelos , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Frequência do Gene , Marcadores Genéticos , Genética Populacional , Genótipo , Filogenia , Reação em Cadeia da Polimerase
17.
Toxins (Basel) ; 10(2)2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29461480

RESUMO

Fusarium head blight (FHB) is a devastating disease that causes extensive yield and quality losses to wheat and other small cereal grains worldwide. Species within the Fusarium graminearum complex are the main pathogens associated with the disease, F. graminearum sensu stricto being the main pathogen in Argentina. Biocontrol can be used as part of an integrated pest management strategy. Phytohormones play a key role in the plant defense system and their production can be induced by antagonistic microorganisms. The aims of this study were to evaluate the effect of the inoculation of Bacillus velezensis RC 218, F. graminearum and their co-inoculation on the production of salicylic acid (SA) and jasmonic acid (JA) in wheat spikes at different periods of time under greenhouse conditions, and to evaluate the effect of B. velezensis RC 218 and Streptomyces albidoflavus RC 87B on FHB disease incidence, severity and deoxynivalenol accumulation on Triticum turgidum L. var. durum under field conditions. Under greenhouse conditions the production of JA was induced after F. graminearum inoculation at 48 and 72 h, but JA levels were reduced in the co-inoculated treatments. No differences in JA or SA levels were observed between the B. velezensis treatment and the water control. In the spikes inoculated with F. graminearum, SA production was induced early (12 h), as it was shown for initial FHB basal resistance, while JA was induced at a later stage (48 h), revealing different defense strategies at different stages of infection by the hemibiotrophic pathogen F. graminearum. Both B. velezensis RC 218 and S. albidoflavus RC 87B effectively reduced FHB incidence (up to 30%), severity (up to 25%) and deoxynivalenol accumulation (up to 51%) on durum wheat under field conditions.


Assuntos
Bacillus , Ciclopentanos/metabolismo , Fusarium/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ácido Salicílico/metabolismo , Streptomyces , Tricotecenos/metabolismo , Triticum/metabolismo , Agentes de Controle Biológico , Grão Comestível/química , Grão Comestível/metabolismo , Grão Comestível/microbiologia , Triticum/química , Triticum/microbiologia
18.
PLoS One ; 12(11): e0185595, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29091722

RESUMO

A long-standing goal in plant breeding has been the ability to confer apomixis to agriculturally relevant species, which would require a deeper comprehension of the molecular basis of apomictic regulatory mechanisms. Eragrostis curvula (Schrad.) Nees is a perennial grass that includes both sexual and apomictic cytotypes. The availability of a reference transcriptome for this species would constitute a very important tool toward the identification of genes controlling key steps of the apomictic pathway. Here, we used Roche/454 sequencing technologies to generate reads from inflorescences of E. curvula apomictic and sexual genotypes that were de novo assembled into a reference transcriptome. Near 90% of the 49568 assembled isotigs showed sequence similarity to sequences deposited in the public databases. A gene ontology analysis categorized 27448 isotigs into at least one of the three main GO categories. We identified 11475 SSRs, and several of them were assayed in E curvula germoplasm using SSR-based primers, providing a valuable set of molecular markers that could allow direct allele selection. The differential contribution to each library of the spliced forms of several transcripts revealed the existence of several isotigs produced via alternative splicing of single genes. The reference transcriptome presented and validated in this work will be useful for the identification of a wide range of gene(s) related to agronomic traits of E. curvula, including those controlling key steps of the apomictic pathway in this species, allowing the extrapolation of the findings to other plant species.


Assuntos
Eragrostis/genética , Transcriptoma , Genótipo
19.
PLoS One ; 12(4): e0175852, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28419145

RESUMO

To overcome environmental stress, plants develop physiological responses that are triggered by genetic or epigenetic changes, some of which involve DNA methylation. It has been proposed that apomixis, the formation of asexual seeds without meiosis, occurs through the temporal or spatial deregulation of the sexual process mediated by genetic and epigenetic factors influenced by the environment. Here, we explored whether there was a link between the occurrence of apomixis and various factors that generate stress, including drought stress, in vitro culture, and intraspecific hybridization. For this purpose, we monitored the embryo sacs of different weeping lovegrass (Eragrostis curvula [Schrad.] Nees) genotypes after the plants were subjected to these stress conditions. Progeny tests based on molecular markers and genome methylation status were analyzed following the stress treatment. When grown in the greenhouse, the cultivar Tanganyika INTA generated less than 2% of its progeny by sexual reproduction. Plants of this cultivar subjected to different stresses showed an increase of sexual embryo sacs, demonstrating an increased expression of sexuality compared to control plants. Plants of the cv. Tanganyika USDA did not demonstrate the ability to generate sexual embryo sacs under any conditions and is therefore classified as a fully apomictic cultivar. We found that this change in the prevalence of sexuality was correlated with genetic and epigenetic changes analyzed by MSAP and AFLPs profiles. Our results demonstrate that different stress conditions can alter the expression of sexual reproduction in facultative tetraploid apomictic cultivars and when the stress stops the reproductive mode shift back to the apomixis original level. These data together with previous observations allow us to generate a hypothetical model of the regulation of apomixis in weeping lovegrass in which the genetic/s region/s that condition apomixis, is/are affected by ploidy, and is/are subjected to epigenetic control.


Assuntos
Apomixia , Eragrostis/genética , Eragrostis/fisiologia , Sementes/fisiologia , Metilação de DNA , Secas , Epigênese Genética , Eragrostis/embriologia , Regulação da Expressão Gênica de Plantas , Genótipo , Hibridização Genética , Ploidias , Sementes/embriologia , Sementes/genética , Estresse Fisiológico
20.
Evol Bioinform Online ; 12: 247-251, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812277

RESUMO

The identification of nested motifs in genomic sequences is a complex computational problem. The detection of these patterns is important to allow the discovery of transposable element (TE) insertions, incomplete reverse transcripts, deletions, and/or mutations. In this study, a de novo strategy for detecting patterns that represent nested motifs was designed based on exhaustive searches for pairs of motifs and combinatorial pattern analysis. These patterns can be grouped into three categories, motifs within other motifs, motifs flanked by other motifs, and motifs of large size. The methodology used in this study, applied to genomic sequences from the plant species Aegilops tauschii and Oryza sativa, revealed that it is possible to identify putative nested TEs by detecting these three types of patterns. The results were validated through BLAST alignments, which revealed the efficacy and usefulness of the new method, which is called Mamushka.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...