Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38362565

RESUMO

Background: The bioactive peptides derived from snake venoms of the Viperidae family species have been promising as therapeutic candidates for neuroprotection due to their ability to prevent neuronal cell loss, injury, and death. Therefore, this study aimed to evaluate the cytoprotective effects of a synthetic proline-rich oligopeptide 7a (PRO-7a;

2.
J. venom. anim. toxins incl. trop. dis ; 30: e20230043, 2024. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1534803

RESUMO

Background: The bioactive peptides derived from snake venoms of the Viperidae family species have been promising as therapeutic candidates for neuroprotection due to their ability to prevent neuronal cell loss, injury, and death. Therefore, this study aimed to evaluate the cytoprotective effects of a synthetic proline-rich oligopeptide 7a (PRO-7a; <EDGPIPP) from Bothrops jararaca snake, on oxidative stress-induced toxicity in neuronal PC12 cells and astrocyte-like C6 cells. Methods: Both cells were pre-treated for four hours with different concentrations of PRO-7a, submitted to H2O2-induced damage for 20 h, and then the oxidative stress markers were analyzed. Also, two independent neuroprotective mechanisms were investigated: a) L-arginine metabolite generation via argininosuccinate synthetase (AsS) activity regulation to produce agmatine or polyamines with neuroprotective properties; b) M1 mAChR receptor subtype activation pathway to reduce oxidative stress and neuron injury. Results: PRO-7a was not cytoprotective in C6 cells, but potentiated the H2O2-induced damage to cell integrity at a concentration lower than 0.38 μM. However, PRO-7a at 1.56 µM, on the other hand, modified H2O2-induced toxicity in PC12 cells by restoring cell integrity, mitochondrial metabolism, ROS generation, and arginase indirect activity. The α-Methyl-DL-aspartic acid (MDLA) and L-NΩ-Nitroarginine methyl ester (L-Name), specific inhibitors of AsS and nitric oxide synthase (NOS), which catalyzes the synthesis of polyamines and NO from L-arginine, did not suppress PRO-7a-mediated cytoprotection against oxidative stress. It suggested that its mechanism is independent of the production of L-arginine metabolites with neuroprotective properties by increased AsS activity. On the other hand, the neuroprotective effect of PRO-7a was blocked in the presence of dicyclomine hydrochloride (DCH), an M1 mAChR antagonist. Conclusions: For the first time, this work provides evidence that PRO-7a-induced neuroprotection seems to be mediated through M1 mAChR activation in PC12 cells, which reduces oxidative stress independently of AsS activity and L-arginine bioavailability.(AU)


Assuntos
Oligopeptídeos/efeitos adversos , Receptores Muscarínicos/química , Venenos de Crotalídeos/síntese química , Prolina , Estresse Oxidativo
3.
Neurosci Biobehav Rev ; 155: 105470, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984569

RESUMO

Pre-existing maternal mental disorders may affect the early interactions between mother and baby, impacting the child's psychoemotional development. The typical antipsychotic haloperidol can be used during pregnancy, even with some restrictions. Its prescription is not limited to psychotic disorders, but also to other psychiatric conditions of high incidence and prevalence in the woman's fertile period. The present review focused on the preclinical available data regarding the biological and behavioral implications of embryonic exposure to haloperidol. The understanding of the effects of psychotropic drugs during neurodevelopment is important for its clinical aspect since there is limited evidence regarding the risks of antipsychotic drug treatment in pregnant women and their children. Moreover, a better comprehension of the mechanistic events that can be affected by antipsychotic treatment during the critical period of neurodevelopment may offer insights into the pathophysiology of neurodevelopmental disorders. The findings presented in this review converge to the existence of several risks associated with prenatal exposure to such medication and emphasize the need for further studies regarding its dimensions.


Assuntos
Antipsicóticos , Transtornos do Neurodesenvolvimento , Efeitos Tardios da Exposição Pré-Natal , Transtornos Psicóticos , Criança , Feminino , Humanos , Gravidez , Haloperidol/efeitos adversos , Antipsicóticos/efeitos adversos , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/epidemiologia , Psicotrópicos/uso terapêutico
4.
Toxicon ; 231: 107178, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37302421

RESUMO

Venom-derived proteins and peptides have prevented neuronal cell loss, damage, and death in the study of neurodegenerative disorders. The cytoprotective effects of the peptide fraction (PF) from Bothrops jararaca snake venom were evaluated against oxidative stress changes in neuronal PC12 cells and astrocyte-like C6 cells. PC12 and C6 cells were pre-treated for 4 h with different concentrations of PF, and then H2O2 was added (0.5 mM in PC12 cells; 0.4 mM in C6 cells) and incubated for 20 h more. In PC12 cells, PF at 0.78 µg mL-1 increased viability (113.6 ± 6.3%) and metabolism (96.3 ± 10.3%) cell against H2O2-induced neurotoxicity (75.6 ± 5.8%; 66.5 ± 3.3%, respectively), reducing oxidative stress markers such as ROS generation, NO production, and arginase indirect activity through urea synthesis. Despite that, PF showed no cytoprotective effects in C6 cells, but potentiated the H2O2-induced damage at a concentration lower than 0.07 µg mL-1. Furthermore, the role of metabolites derived from L-arginine metabolism was verified in PF-mediated neuroprotection in PC12 cells, using specific inhibitors of two of the key enzymes in the L-arginine metabolic pathway: the α-Methyl-DL-aspartic acid (MDLA) to argininosuccinate synthetase (AsS), responsible for the recycling of L-citrulline to L-arginine; and, L-NΩ-Nitroarginine methyl ester (L-Name) to nitric oxide synthase (NOS), which catalyzes the synthesis of NO from L-arginine. The inhibition of AsS and NOS suppressed PF-mediated cytoprotection against oxidative stress, indicating that its mechanism is dependent on the production pathway of L-arginine metabolites such as NO and, more importantly, polyamines from ornithine metabolism, which are involved in the neuroprotection mechanism described in the literature. Overall, this work provides novel opportunities for evaluating whether the neuroprotective properties of PF shown in particular neuronal cells are sustained and for exploring potential drug development pathways for the treatment of neurodegenerative diseases.


Assuntos
Bothrops , Animais , Ratos , Arginina/metabolismo , Arginina/farmacologia , Astrócitos/metabolismo , Bothrops/metabolismo , Peróxido de Hidrogênio , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase/farmacologia , Estresse Oxidativo , Células PC12 , Peptídeos/farmacologia , Venenos de Serpentes/metabolismo
5.
Semin Cell Dev Biol ; 144: 77-86, 2023 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-36210260

RESUMO

Human-induced pluripotent stem cells (hiPSCs) have provided new methods to study neurodegenerative diseases. In addition to their wide application in neuronal disorders, hiPSCs technology can also encompass specific conditions, such as inherited retinal dystrophies. The possibility of evaluating alterations related to retinal disorders in 3D organoids increases the truthfulness of in vitro models. Moreover, both Alzheimer's (AD) and Parkinson's disease (PD) have been described as causing early retinal alterations, generating beta-amyloid protein accumulation, or affecting dopaminergic amacrine cells. This review addresses recent advances and future perspectives obtained from in vitro modeling of retinal diseases, focusing on retinitis pigmentosa (RP). Additionally, we depicted the possibility of evaluating changes related to AD and PD in retinal organoids obtained from potential patients long before the onset of the disease, constituting a valuable tool in early diagnosis. With this, we pointed out prospects in the study of retinal dystrophies and early diagnosis of AD and PD.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Retinose Pigmentar , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Parkinson/diagnóstico , Doença de Parkinson/metabolismo , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Retinose Pigmentar/metabolismo , Organoides , Diagnóstico Precoce
6.
Front Syst Neurosci ; 5: 40, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21713068

RESUMO

Inhibitors of neuronal and endothelial nitric oxide synthase decrease l-3,4-dihidroxifenilalanine (l-DOPA)-induced dyskinesias in rodents. The mechanism of nitric oxide inhibitor action is unknown. The aims of the present study were to investigate the decrease of l-DOPA-induced abnormal involuntary movements (AIMs) in 6-hydroxydopamine (6-OHDA)-lesioned rats by nitric oxide inhibitors following either acute or chronic treatment. The primary findings of this study were that NG-nitro-l-Arginine, an inhibitor of endothelial and neuronal nitric oxide synthase, attenuated AIMs induced by chronic and acute l-DOPA. In contrast, rotational behavior was attenuated only after chronic l-DOPA. The 6-OHDA lesion and the l-DOPA treatment induced a bilateral increase (1.5 times) in the neuronal nitric oxide synthase (nNOS) protein and nNOS mRNA in the striatum and in the frontal cortex. There was a parallel increase, bilaterally, of the FosB/ΔFosB, primarily in the ipsilateral striatum. The exception was in the contralateral striatum and the ipsilateral frontal cortex, where chronic l-DOPA treatment induced an increase of approximately 10 times the nNOS mRNA. Our results provided further evidence of an anti-dyskinetic effect of NOS inhibitor. The effect appeared under l-DOPA acute and chronic treatment. The l-DOPA treatment also revealed an over-expression of the neuronal NOS in the frontal cortex and striatum. Our results corroborated findings that l-DOPA-induced rotation differs between acute and chronic treatment. The effect of the NOS inhibitor conceivably relied on the l-DOPA structural modifications in the Parkinsonian brain. Taken together, these data provided a rationale for further evaluation of NOS inhibitors in the treatment of l-DOPA-induced dyskinesia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...