Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 34(43): 14219-32, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25339736

RESUMO

Spines are dendritic protrusions that receive most of the excitatory input in the brain. Early after the onset of cerebral ischemia dendritic spines in the peri-infarct cortex are replaced by areas of focal swelling, and their re-emergence from these varicosities is associated with neurological recovery after acute ischemic stroke (AIS). Urokinase-type plasminogen activator (uPA) is a serine proteinase that plays a central role in tissue remodeling via binding to the urokinase plasminogen activator receptor (uPAR). We report that cerebral cortical neurons release uPA during the recovery phase from ischemic stroke in vivo or hypoxia in vitro. Although uPA does not have an effect on ischemia- or hypoxia-induced neuronal death, genetic deficiency of uPA (uPA(-/-)) or uPAR (uPAR(-/-)) abrogates functional recovery after AIS. Treatment with recombinant uPA after ischemic stroke induces neurological recovery in wild-type and uPA(-/-) but not in uPAR(-/-) mice. Diffusion tensor imaging studies indicate that uPA(-/-) mice have increased water diffusivity and decreased anisotropy associated with impaired dendritic spine recovery and decreased length of distal neurites in the peri-infarct cortex. We found that the excitotoxic injury induces the clustering of uPAR in dendritic varicosities, and that the binding of uPA to uPAR promotes the reorganization of the actin cytoskeleton and re-emergence of dendritic filopodia from uPAR-enriched varicosities. This effect is independent of uPA's proteolytic properties and instead is mediated by Rac-regulated profilin expression and cofilin phosphorylation. Our data indicate that binding of uPA to uPAR promotes dendritic spine recovery and improves functional outcome following AIS.


Assuntos
Isquemia Encefálica/enzimologia , Espinhas Dendríticas/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/enzimologia , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Células Cultivadas , Espinhas Dendríticas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/patologia , Ligação Proteica/fisiologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/patologia , Resultado do Tratamento , Ativador de Plasminogênio Tipo Uroquinase/farmacologia , Ativador de Plasminogênio Tipo Uroquinase/uso terapêutico
2.
Mol Cell Neurosci ; 52: 9-19, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23063501

RESUMO

The release of the serine proteinase tissue-type plasminogen activator (tPA) from cerebral cortical neurons has a neuroprotective effect in the ischemic brain. Because excitotoxicity is a basic mechanism of ischemia-induced cell death, here we investigated the effect of tPA on excitotoxin-induced neuronal death. We report that genetic overexpression of neuronal tPA or treatment with recombinant tPA renders neurons resistant to the harmful effects of an excitotoxic injury in vitro and in vivo. We found that at concentrations found in the ischemic brain, tPA interacts with synaptic but not extrasynaptic NMDARs. This effect is independent of tPA's proteolytic properties and leads to a rapid and transient phosphorylation of the extracellular signal regulated kinases1/2 (ERK1/2), with ERK1/2-mediated activation of the cAMP response element binding protein (CREB) and induction of the neuroprotective CREB-regulated activating transcription factor 3 (Atf3). In line with these observations, Atf3 down-regulation abrogates the protective effect of tPA against excitotoxin-induced neuronal death. Our data indicate that tPA preferentially activates synaptic NMDARs via a plasminogen-independent mechanism turning on a cell signaling pathway that protects neurons from the deleterious effects of excitotoxicity.


Assuntos
Neurônios/metabolismo , Transdução de Sinais/fisiologia , Ativador de Plasminogênio Tecidual/metabolismo , Fator 3 Ativador da Transcrição/metabolismo , Animais , Western Blotting , Morte Celular/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , N-Metilaspartato/toxicidade , Neurotoxinas/toxicidade , Receptores de N-Metil-D-Aspartato/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativador de Plasminogênio Tecidual/farmacologia
3.
J Neurosci ; 32(29): 9848-58, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22815500

RESUMO

The ability to sense and adapt to hypoxic conditions plays a pivotal role in neuronal survival. Hypoxia induces the release of tissue-type plasminogen activator (tPA) from cerebral cortical neurons. We found that the release of neuronal tPA or treatment with recombinant tPA promotes cell survival in cerebral cortical neurons previously exposed to hypoxic conditions in vitro or experimental cerebral ischemia in vivo. Our studies using liquid chromatography and tandem mass spectrometry revealed that tPA activates the mammalian target of rapamycin (mTOR) pathway, which adapts cellular processes to the availability of energy and metabolic resources. We found that mTOR activation leads to accumulation of the hypoxia-inducible factor-1α (HIF-1α) and induction and recruitment to the cell membrane of the HIF-1α-regulated neuronal transporter of glucose GLUT3. Accordingly, in vivo positron emission tomography studies with 18-fluorodeoxyglucose in mice overexpressing tPA in neurons show that neuronal tPA induces the uptake of glucose in the ischemic brain and that this effect is associated with a decrease in the volume of the ischemic lesion and improved neurological outcome following the induction of ischemic stroke. Our data indicate that tPA activates a cell signaling pathway that allows neurons to sense and adapt to oxygen and glucose deprivation.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/efeitos dos fármacos , Fibrinolíticos/farmacologia , Glucose/metabolismo , Neurônios/efeitos dos fármacos , Ativador de Plasminogênio Tecidual/farmacologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/patologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo
4.
J Neuroinflammation ; 9: 45, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22394384

RESUMO

BACKGROUND: Cerebral cortical neurons have a high vulnerability to the harmful effects of hypoxia. However, the brain has the ability to detect and accommodate to hypoxic conditions. This phenomenon, known as preconditioning, is a natural adaptive process highly preserved among species whereby exposure to sub-lethal hypoxia promotes the acquisition of tolerance to a subsequent lethal hypoxic injury. The cytokine tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor-inducible 14 (Fn14) are found in neurons and their expression is induced by exposure to sub-lethal hypoxia. Accordingly, in this work we tested the hypothesis that the interaction between TWEAK and Fn14 induces tolerance to lethal hypoxic and ischemic conditions. METHODS: Here we used in vitro and in vivo models of hypoxic and ischemic preconditioning, an animal model of transient middle cerebral artery occlusion and mice and neurons genetically deficient in TWEAK, Fn14, or tumor necrosis factor alpha (TNF-α) to investigate whether treatment with recombinant TWEAK or an increase in the expression of endogenous TWEAK renders neurons tolerant to lethal hypoxia. We used enzyme-linked immunosorbent assay to study the effect of TWEAK on the expression of neuronal TNF-α, Western blot analysis to investigate whether the effect of TWEAK was mediated by activation of mitogen-activated protein kinases and immunohistochemical techniques and quantitative real-time polymerase chain reaction analysis to study the effect of TWEAK on apoptotic cell death. RESULTS: We found that either treatment with recombinant TWEAK or an increase in the expression of TWEAK and Fn14 induce hypoxic and ischemic tolerance in vivo and in vitro. This protective effect is mediated by neuronal TNF-α and activation of the extracellular signal-regulated kinases 1 and 2 pathway via phosphorylation and inactivation of the B-cell lymphoma 2-associated death promoter protein. CONCLUSIONS: Our work indicate that the interaction between TWEAK and Fn14 triggers the activation of a cell signaling pathway that results in the induction of tolerance to lethal hypoxia and ischemia. These data indicate that TWEAK may be a potential therapeutic strategy to protect the brain from the devastating effects of an ischemic injury.


Assuntos
Apoptose/efeitos dos fármacos , Infarto da Artéria Cerebral Média/patologia , Precondicionamento Isquêmico/métodos , Fármacos Neuroprotetores/farmacologia , Receptores do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fatores de Necrose Tumoral/farmacologia , Animais , Apoptose/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Córtex Cerebral/citologia , Citocina TWEAK , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Glucose/deficiência , Hipóxia/tratamento farmacológico , Marcação In Situ das Extremidades Cortadas , Técnicas In Vitro , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores do Fator de Necrose Tumoral/deficiência , Receptor de TWEAK , Fatores de Tempo , Fator de Necrose Tumoral alfa/deficiência , Fatores de Necrose Tumoral/deficiência , Fatores de Necrose Tumoral/metabolismo
5.
J Cereb Blood Flow Metab ; 32(1): 57-69, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21792242

RESUMO

Cerebral cortical neurons have a heightened sensitivity to hypoxia and their survival depends on their ability to accommodate to changes in the concentration of oxygen in their environment. Tissue-type plasminogen activator (tPA) is a serine proteinase that activates the zymogen plasminogen into plasmin. Hypoxia induces the release of tPA from cerebral cortical neurons, and it has been proposed that tPA mediates hypoxic and ischemic neuronal death. Here, we show that tPA is devoid of neurotoxic effects and instead is an endogenous neuroprotectant that renders neurons resistant to the effects of lethal hypoxia and ischemia. We present in vitro and in vivo evidence indicating that endogenous tPA and recombinant tPA induce the expression of neuronal tumor necrosis factor-α. This effect, mediated by plasmin and the N-methyl-D-aspartate receptor, leads to increased expression of the cyclin-dependent kinase inhibitor p21 and p21-mediated development of early hypoxic and ischemic tolerance.


Assuntos
Hipóxia-Isquemia Encefálica/metabolismo , Neurônios/metabolismo , Ativador de Plasminogênio Tecidual/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Ensaio de Imunoadsorção Enzimática , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/patologia , Precondicionamento Isquêmico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tecidual/farmacologia , Ativador de Plasminogênio Tecidual/uso terapêutico , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
6.
Am J Pathol ; 177(5): 2576-84, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20864675

RESUMO

The serine proteinase tissue-type plasminogen activator (tPA) and the serine proteinase inhibitor neuroserpin are both expressed in areas of the brain with the highest vulnerability to hypoxia/ischemia. In vitro studies show that neuroserpin inhibits tPA and, to a lesser extent, urokinase-type plasminogen activator and plasmin. Experimental middle cerebral artery occlusion (MCAO) increases tPA activity and neuroserpin expression in ischemic tissue, and genetic deficiency of tPA or either treatment with or overexpression of neuroserpin decreases the volume of the ischemic lesion following MCAO. These findings have led to the hypothesis that neuroserpin's neuroprotection is mediated by inhibition of tPA's alleged neurotoxic effect. Ischemic preconditioning is a natural adaptive process whereby exposure to a sublethal insult induces tolerance against a subsequent lethal ischemic injury. Here we demonstrate that exposure to sublethal hypoxia/ischemia increases the neuroserpin expression in the hippocampal CA1 layer and cerebral cortex, and that neuroserpin induces ischemic tolerance and decreases the volume of the ischemic lesion following MCAO in wild-type and tPA-deficient (tPA-/-) neurons and mice. Plasmin induces neuronal death, and this effect is abrogated by either neuroserpin or the NMDA receptor antagonist MK-801. Neuroserpin also attenuated kainic acid-induced neuronal death. Our data indicate that the neuroprotective effect of neuroserpin is due to inhibition of plasmin-mediated excitotoxin-induced cell death and is independent of neuroserpin's ability to inhibit tPA activity.


Assuntos
Isquemia Encefálica/patologia , Morte Celular/fisiologia , Fibrinolisina/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Neuropeptídeos/metabolismo , Serpinas/metabolismo , Ativador de Plasminogênio Tecidual/antagonistas & inibidores , Animais , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/genética , Fármacos Neuroprotetores/metabolismo , Serpinas/genética , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tecidual/metabolismo , Neuroserpina
7.
J Clin Invest ; 120(6): 2194-205, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20440070

RESUMO

The best-known function of the serine protease tissue-type plasminogen activator (tPA) is as a thrombolytic enzyme. However, it is also found in structures of the brain that are highly vulnerable to hypoxia-induced cell death, where its association with neuronal survival is poorly understood. Here, we have demonstrated that hippocampal areas of the mouse brain lacking tPA activity are more vulnerable to neuronal death following an ischemic insult. We found that sublethal hypoxia, which elicits tolerance to subsequent lethal hypoxic/ischemic injury in a natural process known as ischemic preconditioning (IPC), induced a rapid release of neuronal tPA. Treatment of hippocampal neurons with tPA induced tolerance against a lethal hypoxic insult applied either immediately following insult (early IPC) or 24 hours later (delayed IPC). tPA-induced early IPC was independent of the proteolytic activity of tPA and required the engagement of a member of the LDL receptor family. In contrast, tPA-induced delayed IPC required the proteolytic activity of tPA and was mediated by plasmin, the NMDA receptor, and PKB phosphorylation. We also found that IPC in vivo increased tPA activity in the cornu ammonis area 1 (CA1) layer and Akt phosphorylation in the hippocampus, as well as ischemic tolerance in wild-type but not tPA- or plasminogen-deficient mice. These data show that tPA can act as an endogenous neuroprotectant in the murine hippocampus.


Assuntos
Hipocampo/metabolismo , Fármacos Neuroprotetores/metabolismo , Ativadores de Plasminogênio/farmacologia , Ativador de Plasminogênio Tecidual/farmacologia , Animais , Encéfalo/metabolismo , Morte Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Fibrinolisina , Fibrinolíticos/metabolismo , Hipocampo/citologia , Isquemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Ativadores de Plasminogênio/metabolismo , Serina Proteases/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Ativador de Plasminogênio Tecidual/fisiologia , Ativador de Plasminogênio Tipo Uroquinase/farmacologia
8.
J Cereb Blood Flow Metab ; 30(6): 1147-56, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20068578

RESUMO

Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor-inducible 14 (Fn14) are expressed in endothelial cells and perivascular astrocytes. Here, we show that TWEAK induces a dose-dependent increase in the expression of the chemokine monocyte chemoattractant protein-1 (MCP-1) in astrocytes, and that this effect is mediated by its interaction with Fn14 via nuclear factor-kappaB pathway activation. Exposure to oxygen-glucose deprivation (OGD) conditions increases TWEAK and Fn14 mRNA expression in wild-type (Wt) astrocytic cultures. Likewise, incubation under OGD conditions induces the expression of MCP-1 in Wt astrocytes but not in astrocytes deficient on either TWEAK (TWEAK(-/-)) or Fn14 (Fn14(-/-)). We also found that TWEAK induces the passage of neutrophils to the abluminal side of an in vitro model of the blood-brain barrier. Our earlier studies indicate that cerebral ischemia increases the expression of TWEAK and Fn14 in the endothelial cell-basement membrane-astrocyte interface. Here, we report that middle cerebral artery occlusion increases the expression of MCP-1 and the recruitment of neutrophils into the ischemic tissue in Wt but not in TWEAK(-/-) or Fn14(-/-) mice. These novel results indicate that during cerebral ischemia, the interaction between TWEAK and Fn14 leads to the recruitment of leukocytes into the ischemic tissue.


Assuntos
Isquemia Encefálica/metabolismo , Células Endoteliais/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Fatores de Necrose Tumoral/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Hipóxia Celular , Células Cultivadas , Quimiocina CCL2/biossíntese , Citocina TWEAK , Células Endoteliais/patologia , Regulação da Expressão Gênica/genética , Glucose/metabolismo , Humanos , Camundongos , Camundongos Knockout , Neutrófilos/patologia , Receptores do Fator de Necrose Tumoral/genética , Receptor de TWEAK , Fatores de Necrose Tumoral/genética
9.
J Cereb Blood Flow Metab ; 29(12): 1946-54, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19672275

RESUMO

Studies in animal models of cerebral ischemia indicate that besides its thrombolytic effect, treatment with tissue-type plasminogen activator (tPA) also induces an increase in matrix metalloproteinase-9 (MMP-9) activity in the ischemic tissue associated with the development of cerebral edema. Earlier, we had shown that the low-density lipoprotein receptor-related protein 1 (LRP1) is a substrate for tPA in the brain. In this study, we investigated the effect of the interaction between tPA and microglial LRP1 on MMP-9 activity after middle cerebral artery occlusion (MCAO). We found that exposure to oxygen-glucose deprivation (OGD) conditions increases MMP-9 activity in wild-type (Wt) and plasminogen-deficient (Plg(-/-)) microglia, but not in tPA (tPA(-/-)) or LRP1-deficient (macLRP-) cells. Treatment with tPA increases MMP-9 expression in tPA(-/-) but not in macLRP- microglia. Middle cerebral artery occlusion increases MMP-9 expression and activity in Wt but not in tPA(-/-) or macLRP- mice, and treatment with tPA increases MMP-9 activity in tPA(-/-) mice but not in macLRP- animals. Finally, MCAO-induced ischemic edema and degradation of the interendothelial right junction protein claudin-5 were significantly attenuated in tPA(-/-) and macLRP- mice. The results of our study indicate that the interaction between tPA and microglial LRP1 increases MMP-9 expression and activity resulting in the degradation of claudin-5 and development of cerebral edema.


Assuntos
Isquemia Encefálica/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Microglia/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Células Cultivadas , Regulação da Expressão Gênica , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/citologia , Ativador de Plasminogênio Tecidual/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...