Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JDS Commun ; 4(1): 19-24, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36713129

RESUMO

The objective of this study was to determine the effect of dietary energy source (fat vs. carbohydrate) in calf milk replacer (MR) on growth performance parameters and feed intake in rearing calves. In a randomized complete block design, 68 Holstein calves [40 females and 28 males; (mean ± SD) body weight (BW): 43.7 ± 1.43 kg] were assigned to 17 blocks of 4 calves based on birth date and parity of the dam. Within each block, calves were randomly assigned to 1 of 2 treatments: a high-lactose MR (HL; 17% fat; 44% lactose; n = 34), or a high-fat MR (HF; 23% fat; 37% lactose; n = 34). Lactose was exchanged for fat on a weight per weight basis, resulting in a 6% difference in metabolizable energy density per kilogram of MR. The feeding plan started with 6 L/d for 7 d, then 8 L/d for 35 d, 6 L/d for 7 d, and finally, 4 L/d for 7 d. Milk replacer allowances were offered in 2 meals per day at 140 g/L. Measurements included daily MR, starter and straw intakes, weekly BW, and blood metabolites, including nonesterified fatty acids (NEFA) and glucose, on wk 4, 6, 8, and 10. Increasing fat at the expense of lactose did not affect MR intake or solid feed intake during the preweaning and weaning periods. However, HF calves tended to consume more solid feed than HL calves during the postweaning period (2.63 ± 0.08 vs. 2.52 ± 0.08 kg/d). Additionally, average daily gain (HF = 0.78 ± 0.02, HL = 0.77 ± 0.02 kg/d) and final BW (HF = 98.8 ± 1.53, HL = 97.7 ± 1.57 kg) were not affected by MR composition. Nevertheless, NEFA concentration was higher in HF calves than in HL calves (0.21 ± 0.01 vs. 0.17 ± 0.01 mmol/L), and glucose concentration was higher in HF calves (6.52 ± 0.23 vs. 5.86 ± 0.23 mmol/L). Under the conditions of this study, HF calves consumed similar amounts of solid feed and grew comparably to the HL calves; however, the isonitrogenous replacement of lactose by fat had evident metabolic effects, such as increased blood NEFA and glucose concentrations.

2.
J Dairy Sci ; 104(5): 5432-5444, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33685703

RESUMO

Compared with Holstein whole milk, commercial milk replacers (MR) for calves deliver relatively high levels of lactose and low levels of fat, and protein levels are rather comparable, resulting in a lower energy density and energy-to-protein ratio of the diet. Thus, the objective of this study was to determine the effects of partially exchanging lactose with fat in MR on voluntary feed intake, growth performance, and feeding behavior. Thirty-two male Holstein calves (2.1 ± 0.16 d of age, 46.4 ± 0.77 kg of body weight; BW) were assigned to 16 blocks of 2 calves per block based on arrival date and serum IgG. Within each block, calves were randomly assigned to 2 treatments: a high-lactose MR (HL; 17% fat; 44% lactose), or a high-fat MR (HF; 23% fat; 37% lactose). Lactose was exchanged by fat on a weight per weight basis, resulting in a 6% difference in metabolizable energy density per kilogram of MR. The experiment was divided into 3 phases: preweaning (P1; 0-35 d), weaning (P2; 36-56 d), and postweaning (P3; 57-84 d). For the first 2 wk of P1, calves were individually housed, fed their respective MR ad libitum through teat buckets, and provided access to water. At 14.2 ± 0.5 d of age, calves were group-housed (4 blocks/pen, 8 calves) and housed in group pens for the remainder of the study. In the group pens, calves were fed ad libitum MR, starter feed, chopped wheat straw, and water via automated feeders. During P2, calves were gradually weaned until complete milk withdrawal by 57 d and then monitored until 84 d (P3). Measurements included daily intakes and feeding behavior (rewarded and unrewarded visits), weekly BW and body measurements, and biweekly blood samples. Increasing fat content at the expense of lactose decreased MR intake during P1 by 15% (HL = 1.32 ± 0.04; HF = 1.17 ± 0.04 kg of dry matter per day), whereas total starter intake was not affected by MR composition. Once MR was restricted during P2, HL calves were reported to have more unrewarded visits to the automatic milk feeder than HF calves (11.9 ± 0.95 vs. 8.4 ± 1.03 visits/d, respectively). Crude protein intake was higher for HL calves during P1 (352.1 ± 11.2 vs. 319.6 ± 11.6 g/d), which was attributed to the higher intake of MR during that period, and metabolizable energy intake and protein-to-energy ratio remained comparable between treatments. Plasma cholesterol and nonesterified fatty acids levels were higher in HF calves as a consequence of the diet. Nevertheless, final BW (84 d) did not differ between treatments. Overall, calves fed ad libitum seemed to regulate their intake of MR based on its energy density, without significant effects on solid feed intake and overall growth.


Assuntos
Substitutos do Leite , Leite , Ração Animal/análise , Animais , Peso Corporal , Bovinos , Dieta/veterinária , Ingestão de Alimentos , Lactose , Masculino , Desmame
3.
J Anim Physiol Anim Nutr (Berl) ; 104(6): 1655-1670, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32621377

RESUMO

Recommendations for composition of oral rehydration solutions (ORS) for calves, particularly concerning Na+ , glucose, and their combined effect on tonicity, are not in line with guidelines for humans. Thus, this study aimed to determine the effect of ORS tonicity on water, mineral and acid-base balance. Seventy-two calves were selected based on the severity of dehydration and blood base excess (BE) on day 0. Five calves that did not develop diarrhoea were removed post-inclusion from the study. Calves were allocated to blocks of four animals based on blood BE on day 1. Within each block, calves were randomly assigned to one of four treatments: (a) hypotonic ORS with low Na+ and lactose (HYPO); (b) isotonic ORS with low Na+ and glucose (ISO); (c) hypertonic ORS with high Na+ and glucose (HYPER); and (d) control consisting of warm water including 5 g/L of whey powder (CON). Treatments were administered twice daily over a 3-day period, in which calves were offered 2.0 L of treatment at 1300 and 2100 hr. Calves were fed 2.5 L of milk replacer at 0700 and 1630 hr from day 1 to 3 and 3.0 L from day 4 to 5, and had access to water. Calves were monitored for 5 days in which measurements included intakes, BW, blood sampling and collection of faeces on day 1 and urine from day 1 to 3. All ORS treatments maintained normal serum Na+ , whereas CON did not. Calves in the HYPER group had lower blood pH and greater faecal Na+ losses than HYPO and ISO. Plasma expansion relative to baseline was higher in low tonicity ORS (+4.8%) when compared with CON (+1.0%). Urine osmolality was 30% higher in HYPER calves. In this experiment, low tonicity ORS were more effective at restoring water, mineral and acid-base balance than the hypertonic ORS.


Assuntos
Equilíbrio Ácido-Base , Diarreia , Soluções para Reidratação , Ração Animal , Animais , Bovinos , Diarreia/terapia , Diarreia/veterinária , Glucose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...