Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e31767, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38841508

RESUMO

This paper proposes a new contribution in the field of optimizing control techniques for wind systems to enhance the quality of the energy produced in the grid. Although the Sliding Mode control technique, whether classical or involving the use of artificial intelligence, has shown interesting results, its main drawback lies in the oscillation phenomenon commonly referred to as "chattering." This phenomenon affects the accuracy and robustness of the system, as well as the parametric variation of the system. In this work, we propose a solution that combines two nonlinear techniques based on the Lyapunov theorem to eliminate the chattering phenomenon. It is a hybrid approach between the Backstepping strategy and the Sliding Mode, aiming to control the active and reactive powers of the doubly fed induction generator (DFIG) connected to the electrical grid by two converters (grid side and machine side). This hybrid technique aims to improve the performance of the wind system in terms of precision errors, stability, as well as active and reactive power. The proposed solution has been validated in the Matlab & Simulink environment to assess the performance and robustness of the proposed model, as well as experimentally validated on a test bench using the DSPACE 1104 card. The obtained results are then compared with other techniques, demonstrating a significant improvement in performance.

2.
Sci Rep ; 12(1): 11782, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35821271

RESUMO

This paper presents a new contribution in the field of the optimization of the techniques of control of the wind systems and the improvement of the quality of energy produced in the grid. The Sliding Mode control technique gives quite interesting results, but its major drawback lies in the phenomenon of chattering (oscillations), which reduces the system's precision. We propose in this work a solution to cancel this chattering phenomenon by the implication of the adaptive Backstepping technique to control the powers of the double-fed asynchronous generator (DFIG) connected to the electrical network by two converters (network side and side machine) in the nominal part of the sliding mode model. This hybrid technique will correct errors of precision and stability and the performance of the wind system obtained in terms of efficiency, active and reactive power is significant. First, a review of the wind system was presented. Then, an exhaustive explanation of the Backstepping technique based on the Lyapunov stability and optimization method has been reported. Subsequently, a validation on the Matlab & Simulink environment was carried out to test the performance and robustness of the proposed model. The results obtained from this work, either by follow-up or robustness tests, show a significant performance improvement compared to other control techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...