Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Sci Rep ; 14(1): 15452, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965349

RESUMO

Ion-beam radiotherapy is an advanced cancer treatment modality offering steep dose gradients and a high biological effectiveness. These gradients make the therapy vulnerable to patient-setup and anatomical changes between treatment fractions, which may go unnoticed. Charged fragments from nuclear interactions of the ion beam with the patient tissue may carry information about the treatment quality. Currently, the fragments escape the patient undetected. Inter-fractional in-vivo treatment monitoring based on these charged nuclear fragments could make ion-beam therapy safer and more efficient. We developed an ion-beam monitoring system based on 28 hybrid silicon pixel detectors (Timepix3) to measure the distribution of fragment origins in three dimensions. The system design choices as well as the ion-beam monitoring performance measurements are presented in this manuscript. A spatial resolution of 4 mm along the beam axis was achieved for the measurement of individual fragment origins. Beam-range shifts of 1.5 mm were identified in a clinically realistic treatment scenario with an anthropomorphic head phantom. The monitoring system is currently being used in a prospective clinical trial at the Heidelberg Ion Beam Therapy Centre for head-and-neck as well as central nervous system cancer patients.


Assuntos
Imagens de Fantasmas , Humanos , Radioterapia com Íons Pesados/métodos , Dosagem Radioterapêutica
2.
Radiat Oncol ; 19(1): 71, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849900

RESUMO

BACKGROUND: Particle therapy makes a noteworthy contribution in the treatment of tumor diseases. In order to be able to irradiate from different angles, usually expensive, complex and large gantries are used. Instead rotating the beam via a gantry, the patient itself might be rotated. Here we present tolerance and compliance of volunteers for a fully-enclosed patient rotation system in a clinical magnetic resonance (MR)-scanner for potential use in MR-guided radiotherapy, conducted within a prospective evaluation study. METHODS: A patient rotation system was used to simulate and perform magnetic resonance imaging (MRI)-examinations with 50 volunteers without an oncological question. For 20 participants, the MR-examination within the bore was simulated by introducing realistic MRI noise, whereas 30 participants received an examination with image acquisition. Initially, body parameters and claustrophobia were assessed. The subjects were then rotated to different angles for simulation (0°, 45°, 90°, 180°) and imaging (0°, 70°, 90°, 110°). At each angle, anxiety and motion sickness were assessed using a 6-item State-Trait-Anxiety-Inventory (STAI-6) and a modified Motion Sickness Assessment Questionnaire (MSAQ). In addition, general areas of discomfort were evaluated. RESULTS: Out of 50 subjects, three (6%) subjects terminated the study prematurely. One subject dropped out during simulation due to nausea while rotating to 45°. During imaging, further two subjects dropped out due to shoulder pain from positioning at 90° and 110°, respectively. The average result for claustrophobia (0 = no claustrophobia to 4 = extreme claustrophobia) was none to light claustrophobia (average score: simulation 0.64 ± 0.33, imaging 0.51 ± 0.39). The mean anxiety scores (0% = no anxiety to 100% = maximal anxiety) were 11.04% (simulation) and 15.82% (imaging). Mean motion sickness scores (0% = no motion sickness to 100% = maximal motion sickness) of 3.5% (simulation) and 6.76% (imaging) were obtained across all participants. CONCLUSION: Our study proves the feasibility of horizontal rotation in a fully-enclosed rotation system within an MR-scanner. Anxiety scores were low and motion sickness was only a minor influence. Both anxiety and motion sickness showed no angular dependency. Further optimizations with regard to immobilization in the rotation device may increase subject comfort.


Assuntos
Imageamento por Ressonância Magnética , Radioterapia Guiada por Imagem , Humanos , Estudos Prospectivos , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Adulto , Rotação , Radioterapia Guiada por Imagem/métodos , Pessoa de Meia-Idade , Adulto Jovem , Enjoo devido ao Movimento/etiologia , Cooperação do Paciente , Ansiedade/etiologia , Voluntários Saudáveis
3.
Med Phys ; 51(6): 4028-4043, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38656549

RESUMO

BACKGROUND: The pursuit of adaptive radiotherapy using MR imaging for better precision in patient positioning puts stringent demands on the hardware components of the MR scanner. Particularly in particle therapy, the dose distribution and thus the efficacy of the treatment is susceptible to beam attenuation from interfering materials in the irradiation path. This severely limits the usefulness of conventional imaging coils, which contain highly attenuating parts such as capacitors and preamplifiers in an unknown position, and requires development of a dedicated radiofrequency (RF) coil with close consideration of the materials and components used. PURPOSE: In MR-guided radiation therapy in the human torso, imaging coils with a large FOV and homogeneous B1 field distribution are required for reliable tissue classification. In this work, an imaging coil for MR-guided particle therapy was developed with minimal ion attenuation while maintaining flexibility in treatment. METHODS: A birdcage coil consisting of nearly radiation-transparent materials was designed and constructed for a closed-bore 1.5 T MR system. Additionally, the coil was mounted on a rotatable patient capsule for flexible positioning of the patient relative to the beam. The ion attenuation of the RF coil was investigated in theory and via measurements of the Bragg peak position. To characterize the imaging quality of the RF coil, transmit and receive field distributions were simulated and measured inside a homogeneous tissue-simulating phantom for various rotation angles of the patient capsule ranging from 0° to 345° in steps of 15°. Furthermore, simulations with a heterogeneous human voxel model were performed to better estimate the effect of real patient loading, and the RF coil was compared to the internal body coil in terms of SNR for a full rotation of the patient capsule. RESULTS: The RF coil (total water equivalent thickness (WET) ≈ 420 µm, WET of conductor ≈ 210 µm) can be considered to be radiation-transparent, and a measured transmit power efficiency (B1 +/ P $\sqrt {\mathrm{P}} $ ) between 0.17 µT/ W $\sqrt {\mathrm{W}} $ and 0.26 µT/ W $\sqrt {\mathrm{W}} $ could be achieved in a volume (Δz = 216 mm, complete x and y range) for the 24 investigated rotation angles of the patient capsule. Furthermore, homogeneous transmit and receive field distributions were measured and simulated in the transverse, coronal and sagittal planes in a homogeneous phantom and a human voxel model. In addition, the SNR of the radiation-transparent RF coil varied between 103 and 150, in the volume (Δz = 216 mm) of a homogeneous phantom and surpasses the SNR of the internal body coil for all rotation angles of the patient capsule. CONCLUSIONS: A radiation-transparent RF coil was developed and built that enables flexible patient to beam positioning via full rotation capability of the RF coil and patient relative to the beam, with results providing promising potential for adaptive MR-guided particle therapy.


Assuntos
Imageamento por Ressonância Magnética , Radioterapia Guiada por Imagem , Imageamento por Ressonância Magnética/instrumentação , Humanos , Radioterapia Guiada por Imagem/instrumentação , Rotação , Desenho de Equipamento , Imagens de Fantasmas , Ondas de Rádio , Posicionamento do Paciente/instrumentação
4.
Phys Med Biol ; 68(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37918022

RESUMO

Objective. Carbon ion radiotherapy is a promising radiation technique for malignancies like pancreatic cancer. However, organs' motion imposes challenges for achieving homogeneous dose delivery. In this study, an anthropomorphicPancreasPhantom forIon-beamTherapy (PPIeT) was developed to simulate breathing and gastrointestinal motion during radiotherapy.Approach. The developed phantom contains a pancreas, two kidneys, a duodenum, a spine and a spinal cord. The shell of the organs was 3D printed and filled with agarose-based mixtures. Hounsfield Units (HU) of PPIeTs' organs were measured by CT. The pancreas motion amplitude in cranial-caudal (CC) direction was evaluated from patients' 4D CT data. Motions within the obtained range were simulated and analyzed in PPIeT using MRI. Additionally, GI motion was mimicked by changing the volume of the duodenum and quantified by MRI. A patient-like treatment plan was calculated for carbon ions, and the phantom was irradiated in a static and moving condition. Dose measurements in the organs were performed using an ionization chamber and dosimetric films.Main results. PPIeT presented tissue equivalent HU and reproducible breathing-induced CC displacements of the pancreas between (3.98 ± 0.36) mm and a maximum of (18.19 ± 0.44) mm. The observed maximum change in distance of (14.28 ± 0.12) mm between pancreas and duodenum was consistent with findings in patients. Carbon ion irradiation revealed homogenous coverage of the virtual tumor at the pancreas in static condition with a 1% deviation from the treatment plan. Instead, the dose delivery during motion with the maximum amplitude yielded an underdosage of 21% at the target and an increased uncertainty by two orders of magnitude.Significance. A dedicated phantom was designed and developed for breathing motion assessment of dose deposition during carbon ion radiotherapy. PPIeT is a unique tool for dose verification in the pancreas and its organs at risk during end-to-end tests.


Assuntos
Radioterapia com Íons Pesados , Neoplasias Pancreáticas , Humanos , Movimentos dos Órgãos , Planejamento da Radioterapia Assistida por Computador/métodos , Movimento (Física) , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/radioterapia , Carbono , Imagens de Fantasmas , Dosagem Radioterapêutica
5.
Med Phys ; 50(8): 5222-5237, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37145971

RESUMO

BACKGROUND: Interest in spatial fractionation radiotherapy has exponentially increased over the last decade as a significant reduction of healthy tissue toxicity was observed by mini-beam irradiation. Published studies, however, mostly use rigid mini-beam collimators dedicated to their exact experimental arrangement such that changing the setup or testing new mini-beam collimator configurations becomes challenging and expensive. PURPOSE: In this work, a versatile, low-cost mini-beam collimator was designed and manufactured for pre-clinical applications with X-ray beams. The mini-beam collimator enables variability of the full width at half maximum (FWHM), the center-to-center distance (ctc), the peak-to-valley dose ratio (PVDR), and the source-to-collimator distance (SCD). METHODS: The mini-beam collimator is an in-house development, which was constructed of 10 ×  40 mm2 tungsten or brass plates. These metal plates were combined with 3D-printed plastic plates that can be stacked together in the desired order. A standard X-ray source was used for the dosimetric characterization of four different configurations of the collimator, including a combination of plastic plates of 0.5, 1, or 2 mm width, assembled with 1 or 2 mm thick metal plates. Irradiations were done at three different SCDs for characterizing the performance of the collimator. For the SCDs closer to the radiation source, the plastic plates were 3D-printed with a dedicated angle to compensate for the X-ray beam divergence, making it possible to study ultra-high dose rates of around 40 Gy/s. All dosimetric quantifications were performed using EBT-XD films. Additionally, in vitro studies with H460 cells were carried out. RESULTS: Characteristic mini-beam dose distributions were obtained with the developed collimator using a conventional X-ray source. With the exchangeable 3D-printed plates, FWHM and ctc from 0.52 to 2.11 mm, and from 1.77 to 4.61 mm were achieved, with uncertainties ranging from 0.01% to 8.98%, respectively. The FWHM and ctc obtained with the EBT-XD films are in agreement with the design of each mini-beam collimator configuration. For dose rates in the order of several Gy/min, the highest PVDR of 10.09 ± 1.08 was achieved with a collimator configuration of 0.5 mm thick plastic plates and 2 mm thick metal plates. Exchanging the tungsten plates with the lower-density metal brass reduced the PVDR by approximately 50%. Also, increasing the dose rate to ultra-high dose rates was feasible with the mini-beam collimator, where a PVDR of 24.26 ± 2.10 was achieved. Finally, it was possible to deliver and quantify mini-beam dose distribution patterns in vitro. CONCLUSIONS: With the developed collimator, we achieved various mini-beam dose distributions that can be adjusted according to the needs of the user in regards to FWHM, ctc, PVDR and SCD, while accounting for beam divergence. Therefore, the designed mini-beam collimator may enable low-cost and versatile pre-clinical research on mini-beam irradiation.


Assuntos
Comércio , Tungstênio
6.
Z Med Phys ; 33(2): 155-167, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35868888

RESUMO

X-ray computed tomography (CT) is a cardinal tool in clinical practice. It provides cross-sectional images within seconds. The recent introduction of clinical photon-counting CT allowed for an increase in spatial resolution by more than a factor of two resulting in a pixel size in the center of rotation of about 150 µm. This level of spatial resolution is in the order of dedicated preclinical micro-CT systems. However so far, the need for different dedicated clinical and preclinical systems often hinders the rapid translation of early research results to applications in men. This drawback might be overcome by ultra-high resolution (UHR) clinical photon-counting CT unifying preclinical and clinical research capabilities in a single machine. Herein, the prototype of a clinical UHR PCD CT (SOMATOM CounT, Siemens Healthineers, Forchheim, Germany) was used. The system comprises a conventional energy-integrating detector (EID) and a novel photon-counting detector (PCD). While the EID provides a pixel size of 0.6 mm in the centre of rotation, the PCD provides a pixel size of 0.25 mm. Additionally, it provides a quantification of photon energies by sorting them into up to four distinct energy bins. This acquisition of multi-energy data allows for a multitude of applications, e.g. pseudo-monochromatic imaging. In particular, we examine the relation between spatial resolution, image noise and administered radiation dose for a multitude of use-cases. These cases include ultra-high resolution and multi-energy acquisitions of mice administered with a prototype bismuth-based contrast agent (nanoPET Pharma, Berlin, Germany) as well as larger animals and actual patients. The clinical EID provides a spatial resolution of about 9 lp/cm (modulation transfer function at 10%, MTF10%) while UHR allows for the acquisition of images with up to 16 lp/cm allowing for the visualization of all relevant anatomical structures in preclinical and clinical specimen. The spectral capabilities of the system enable a variety of applications previously not available in preclinical research such as pseudo-monochromatic images. Clinical ultra-high resolution photon-counting CT has the potential to unify preclinical and clinical research on a single system enabling versatile imaging of specimens and individuals ranging from mice to man.


Assuntos
Tomografia Computadorizada por Raios X , Pesquisa Translacional Biomédica , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Tomógrafos Computadorizados , Meios de Contraste , Fótons
7.
Int J Comput Assist Radiol Surg ; 17(11): 2141-2150, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35604488

RESUMO

PURPOSE: Fusing image information has become increasingly important for optimal diagnosis and treatment of the patient. Despite intensive research towards markerless registration approaches, fiducial marker-based methods remain the default choice for a wide range of applications in clinical practice. However, as especially non-invasive markers cannot be positioned reproducibly in the same pose on the patient, pre-interventional imaging has to be performed immediately before the intervention for fiducial marker-based registrations. METHODS: We propose a new non-invasive, reattachable fiducial skin marker concept for multi-modal registration approaches including the use of electromagnetic or optical tracking technologies. We furthermore describe a robust, automatic fiducial marker localization algorithm for computed tomography (CT) and magnetic resonance imaging (MRI) images. Localization of the new fiducial marker has been assessed for different marker configurations using both CT and MRI. Furthermore, we applied the marker in an abdominal phantom study. For this, we attached the marker at three poses to the phantom, registered ten segmented targets of the phantom's CT image to live ultrasound images and determined the target registration error (TRE) for each target and each marker pose. RESULTS: Reattachment of the marker was possible with a mean precision of 0.02 mm ± 0.01 mm. Our algorithm successfully localized the marker automatically in all ([Formula: see text]) evaluated CT/MRI images. Depending on the marker pose, the mean ([Formula: see text]) TRE of the abdominal phantom study ranged from 1.51 ± 0.75 mm to 4.65 ± 1.22 mm. CONCLUSIONS: The non-invasive, reattachable skin marker concept allows reproducible positioning of the marker and automatic localization in different imaging modalities. The low TREs indicate the potential applicability of the marker concept for clinical interventions, such as the puncture of abdominal lesions, where current image-based registration approaches still lack robustness and existing marker-based methods are often impractical.


Assuntos
Marcadores Fiduciais , Imagem Multimodal , Algoritmos , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos
8.
Med Phys ; 49(3): 1776-1792, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35073413

RESUMO

PURPOSE: Noninvasive methods to monitor carbon-ion beams in patients are desired to fully exploit the advantages of carbon-ion radiotherapy. Prompt secondary ions produced in nuclear fragmentations of carbon ions are of particular interest for monitoring purposes as they can escape the patient and thus be detected and tracked to measure the radiation field in the irradiated object. This study aims to evaluate the performance of secondary-ion tracking to detect, visualize, and localize an internal air cavity used to mimic inter-fractional changes in the patient anatomy at different depths along the beam axis. METHODS: In this work, a homogeneous head phantom was irradiated with a realistic carbon-ion treatment plan with a typical prescribed fraction dose of 3 Gy(RBE). Secondary ions were detected by a mini-tracker with an active area of 2 cm2 , based on the Timepix3 semiconductor pixel detector technology. The mini-tracker was placed 120 mm behind the center of the target at an angle of 30 degrees with respect to the beam axis. To assess the performance of the developed method, a 2-mm thick air cavity was inserted in the head phantom at several depths: in front of as well as at the entrance, in the middle, and at the distal end of the target volume. Different reconstruction methods of secondary-ion emission profile were studied using the FLUKA Monte Carlo simulation package. The perturbations in the emission profiles caused by the air cavity were analyzed to detect the presence of the air cavity and localize its position. RESULTS: The perturbations in the radiation field mimicked by the 2-mm thick cavity were found to be significant. A detection significance of at least three standard deviations in terms of spatial distribution of the measured tracks was found for all investigated cavity depths, while the highest significance (six standard deviations) was obtained when the cavity was located upstream of the tumor. For a tracker with an eight-fold sensitive area, the detection significance rose to at least nine standard deviations and up to 17 standard deviations, respectively. The cavity could be detected at all depths and its position measured within 6.5 ± 1.4 mm, which is sufficient for the targeted clinical performance of 10 mm. CONCLUSION: The presented systematic study concerning the detection and localization of small inter-fractional structure changes in a realistic clinical setting demonstrates that secondary ions carry a large amount of information on the internal structure of the irradiated object and are thus attractive to be further studied for noninvasive monitoring of carbon-ion treatments.


Assuntos
Carbono , Radioterapia com Íons Pesados , Carbono/uso terapêutico , Radioterapia com Íons Pesados/métodos , Humanos , Íons , Método de Monte Carlo , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica
9.
Phys Med Biol ; 67(4)2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35081516

RESUMO

Purpose. Improvements in image-guided radiotherapy (IGRT) enable accurate and precise treatment of moving tumors in the abdomen while simultaneously sparing healthy tissue. However, the lack of validation tools for newly developed MR-guided radiotherapy hybrid devices such as the MR-Linac is an open issue. This study presents a custom developed abdominal phantom with respiratory organ motion and multimodal imaging contrast to perform end-to-end tests for IGRT treatment planning scenarios.Methods. The abdominal phantom contains deformable and anatomically shaped liver and kidney models made of Ni-DTPA and KCl-doped agarose mixtures that can be reproducibly positioned within the phantom. Organ models are wrapped in foil to avoid ion exchange with the surrounding agarose and to provide stable T1 and T2 relaxation times as well as HU numbers. Breathing motion is realized by a diaphragm connected to an actuator that is hydraulically controlled via a programmable logic controller. With this system, artificial and patient-specific breathing patterns can be carried out. In 1.5 T magnetic resonance imaging (MRI), diaphragm, liver and kidney motion was measured and compared to the breathing motion of a healthy male volunteer for different breathing amplitudes including shallow, normal and deep breathing.Results. The constructed abdominal phantom demonstrated organ-equivalent intensity values in CT as well as in MRI. T1-weighted (T1w) and T2-weighted (T2w) relaxation times for 1.5 T and CT numbers were 552.9 ms, 48.2 ms and 48.8 HU (liver) as well as 950.42 ms, 79 ms and 28.2 HU (kidney), respectively. These values were stable for more than six months. Extracted breathing motion from a healthy volunteer revealed a liver to diaphragm motion ratio (LDMR) of 64.4% and a kidney to diaphragm motion ratio (KDMR) of 30.7%. Well-comparable values were obtained for the phantom (LDMR: 65.5%, KDMR: 27.5%).Conclusions. The abdominal phantom demonstrated anthropomorphic T1 and T2 relaxation times as well as HU numbers and physiological motion pattern in MRI and CT. This allows for wide use in the validation of IGRT including MRgRT.


Assuntos
Movimentos dos Órgãos , Radioterapia Guiada por Imagem , Abdome/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Movimento (Física) , Imagem Multimodal , Imagens de Fantasmas , Sefarose
10.
Front Oncol ; 11: 780221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912718

RESUMO

The dose conformity of carbon-ion beam radiotherapy, which allows the reduction of the dose deposition in healthy tissue and the escalation of the dose to the tumor, is associated with a high sensitivity to anatomical changes during and between treatment irradiations. Thus, the monitoring of inter-fractional anatomical changes is crucial to ensure the dose conformity, to potentially reduce the size of the safety margins around the tumor and ultimately to reduce the irradiation of healthy tissue. To do so, monitoring methods of carbon-ion radiotherapy in depth using secondary-ion tracking are being investigated. In this work, the detection and localization of a small air cavity of 2 mm thickness were investigated at different detection angles of the mini-tracker relative to the beam axis. The experiments were conducted with a PMMA head phantom at the Heidelberg Ion-Beam Therapy Center (HIT) in Germany. In a clinic-like irradiation of a single field of 3 Gy (RBE), secondary-ion emission profiles were measured by a 2 cm2 mini-tracker composed of two silicon pixel detectors. Two positions of the cavity in the head phantom were studied: in front and in the middle of the tumor volume. The significance of the cavity detection was found to be increased at smaller detection angles, while the accuracy of the cavity localization was improved at larger detection angles. Detection angles of 20° - 30° were found to be a good compromise for accessing both, the detectability and the position of the air cavity along the depth in the head of a patient.

11.
Med Phys ; 48(4): 1624-1632, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33207020

RESUMO

OBJECTIVE: To develop an anthropomorphic, deformable and multimodal pelvis phantom with positron emission tomography extension for radiotherapy (ADAM PETer). METHODS: The design of ADAM PETer was based on our previous pelvis phantom (ADAM) and extended for compatibility with PET and use in 3T magnetic resonance imaging (MRI). The formerly manually manufactured silicon organ surrogates were replaced by three-dimensional (3D) printed organ shells. Two intraprostatic lesions, four iliac lymph node metastases and two pelvic bone metastases were added to simulate prostate cancer as multifocal and metastatic disease. Radiological properties [computed tomography (CT) and 3T MRI] of cortical bone, bone marrow and adipose tissue were simulated by heavy gypsum, a mixture of Vaseline and K2 HPO4 and peanut oil, respectively. For soft tissues, agarose gels with varying concentrations of agarose, gadolinium (Gd) and sodium fluoride (NaF) were developed. The agarose gels were doped with patient-specific activity concentrations of a Fluorine-18 labelled compound and then filled into the 3D printed organ shells of prostate lesions, lymph node and bone metastases. The phantom was imaged at a dual energy CT and a 3T PET/MRI scanner. RESULTS: The compositions of the soft tissue surrogates are the following (given as mass fractions of agarose[w%]/NaF[w%]/Gd[w%]): Muscle (4/1/0.027), prostate (1.35/4.2/0.011), prostate lesions (2.25/4.2/0.0085), lymph node and bone metastases (1.4/4.2/0.025). In all imaging modalities, the phantom simulates human contrast. Intraprostatic lesions appear hypointense as compared to the surrounding normal prostate tissue in T2-weighted MRI. The PET signal of all tumors can be localized as focal spots at their respective site. Activity concentrations of 12.0 kBq/mL (prostate lesion), 12.4 kBq/mL (lymph nodes) and 39.5 kBq/mL (bone metastases) were measured. CONCLUSION: The ADAM PETer pelvis phantom can be used as multimodal, anthropomorphic model for CT, 3T-MRI and PET measurements. It will be central to simulate and optimize the technical workflow for the integration of PET/MRI-based radiation treatment planning of prostate cancer patients.


Assuntos
Neoplasias da Próstata , Radioterapia Guiada por Imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pelve/diagnóstico por imagem , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia
12.
Strahlenther Onkol ; 194(5): 425-434, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29349601

RESUMO

BACKGROUND: The present work aimed to analyze the feasibility of a shuttle-based MRI-guided radiation therapy (MRgRT) in the treatment of pelvic malignancies. PATIENTS AND METHODS: 20 patients with pelvic malignancies were included in this prospective feasibility analysis. Patients underwent daily MRI in treatment position prior to radiotherapy at the German Cancer Research Center. Positional inaccuracies, time and patient compliance were assessed for the application of off-line MRgRT. RESULTS: In 78% of applied radiation fractions, MR imaging for position verification could be performed without problems. Additionally, treatment-related side effects and reduced patient compliance were only responsible for omission of MRI in 9% of radiation fractions. The study workflow took a median time of 61 min (range 47-99 min); duration for radiotherapy alone was 13 min (range 7-26 min). Patient positioning, MR imaging and CT imaging including patient repositioning and the shuttle transfer required median times of 10 min (range 7-14 min), 26 min (range 15-60 min), 5 min (range 3-8 min) and 8 min (range 2-36 min), respectively. To assess feasibility of shuttle-based MRgRT, the reference point coordinates for the x, y and z axis were determined for the MR images and CT obtained prior to the first treatment fraction and correlated with the coordinates of the planning CT. In our dataset, the median positional difference between MR imaging and CT-based imaging based on fiducial matching between MR and CT imaging was equal to or less than 2 mm in all spatial directions. The limited space in the MR scanner influenced patient selection, as the bore of the scanner had to accommodate the immobilization device and the constructed stereotactic frame. Therefore, obese, extremely muscular or very tall patients could not be included in this trial in addition to patients for whom exposure to MRI was generally judged inappropriate. CONCLUSION: This trial demonstrated for the first time the feasibility and patient compliance of a shuttle-based off-line approach to MRgRT of pelvic malignancies.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias Pélvicas/radioterapia , Radioterapia Guiada por Imagem/métodos , Adulto , Idoso , Tomografia Computadorizada de Feixe Cônico , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Avaliação de Processos e Resultados em Cuidados de Saúde , Posicionamento do Paciente , Neoplasias Pélvicas/diagnóstico por imagem , Neoplasias Pélvicas/patologia , Estudos Prospectivos
13.
Med Phys ; 43(2): 908-16, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26843251

RESUMO

PURPOSE: Phantom surrogates were developed to allow multimodal [computed tomography (CT), magnetic resonance imaging (MRI), and teletherapy] and anthropomorphic tissue simulation as well as materials and methods to construct deformable organ shapes and anthropomorphic bone models. METHODS: Agarose gels of variable concentrations and loadings were investigated to simulate various soft tissue types. Oils, fats, and Vaseline were investigated as surrogates for adipose tissue and bone marrow. Anthropomorphic shapes of bone and organs were realized using 3D-printing techniques based on segmentations of patient CT-scans. All materials were characterized in dual energy CT and MRI to adapt CT numbers, electron density, effective atomic number, as well as T1- and T2-relaxation times to patient and literature values. RESULTS: Soft tissue simulation could be achieved with agarose gels in combination with a gadolinium-based contrast agent and NaF to simulate muscle, prostate, and tumor tissues. Vegetable oils were shown to be a good representation for adipose tissue in all modalities. Inner bone was realized using a mixture of Vaseline and K2HPO4, resulting in both a fatty bone marrow signal in MRI and inhomogeneous areas of low and high attenuation in CT. The high attenuation of outer bone was additionally adapted by applying gypsum bandages to the 3D-printed hollow bone case with values up to 1200 HU. Deformable hollow organs were manufactured using silicone. Signal loss in the MR images based on the conductivity of the gels needs to be further investigated. CONCLUSIONS: The presented surrogates and techniques allow the customized construction of multimodality, anthropomorphic, and deformable phantoms as exemplarily shown for a pelvic phantom, which is intended to study adaptive treatment scenarios in MR-guided radiation therapy.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Pelve , Imagens de Fantasmas , Radioterapia Guiada por Imagem/instrumentação , Tecido Adiposo/efeitos da radiação , Humanos , Ossos Pélvicos/efeitos da radiação
14.
Phys Med Biol ; 60(8): 3375-87, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25831017

RESUMO

According to the Directory of Radiotherapy Centres (DIRAC) there are 2348 Cobalt-60 (Co-60) teletherapy units worldwide, most of them in low and middle income countries, compared to 11046 clinical accelerators. To improve teletherapy with Co-60, a mechanical Multi-Leaf Collimator (MLC) was developed, working with pneumatic pressure and thus independent of electricity supply. Instead of tungsten, brass was used as leaf material to make the mechanical MLC more affordable. The physical properties and clinical applicability of this mechanical MLC are presented here. The leakage strongly depends on the fieldsize of the therapy unit due to scatter effects. The maximum transmission through the leaves measured 2.5 cm from the end-to-end gap, within a field size of 20 cm × 30 cm defined by jaws of the therapy unit at 80 cm SAD, amounts 4.2%, normalized to an open 10 cm × 10 cm field, created by the mechanical MLC. Within a precollimated field size of 12.5 cm × 12.5 cm, the end-to-end leakage is 6.5% normalized to an open 10 cm × 10 cm field as well. This characteristic is clinically acceptable considering the criteria for non-IMRT MLCs of the International Electrotechnical Commission (IEC 60601-2-1). The penumbra for a 10 cm × 10 cm field was measured to be 9.14 mm in plane and 8.38 mm cross plane. The clinical applicability of the designed mechanical MLC was affirmed by measurements relating to all relevant clinical properties such as penumbra, leakage, output factors and field widths. Hence this novel device presents an apt way forward to make radiotherapy with conformal fields possible in low-infrastructure environments, using gantry based Co-60 therapy units.


Assuntos
Radioisótopos de Cobalto/uso terapêutico , Neoplasias/radioterapia , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia/instrumentação , Humanos , Aceleradores de Partículas/instrumentação , Radioterapia/métodos , Software
15.
Radiat Oncol ; 9: 12, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24401489

RESUMO

BACKGROUND: The purpose of this clinical study is to investigate the clinical feasibility and safety of a shuttle-based MR-linac connection to provide MR-guided radiotherapy. METHODS/DESIGN: A total of 40 patients with an indication for a neoadjuvant, adjuvant or definitive radiation treatment will be recruited including tumors of the head and neck region, thorax, upper gastrointestinal tract and pelvic region. All study patients will receive standard therapy, i.e. highly conformal radiation techniques like CT-guided intensity-modulated radiotherapy (IMRT) with or without concomitant chemotherapy or other antitumor medication, and additionally daily short MR scans in treatment position with the same immobilisation equipment used for irradiation for position verification and imaging of the anatomical and functional changes during the course of radiotherapy. For daily position control, skin marks and a stereotactic frame will be used for both imaging modalities. Patient transfer between the MR device and the linear accelerator will be performed with a shuttle system which uses an air-bearing patient platform for both procedures. The daily acquired MR and CT data sets will be digitally registrated, correlated with the planning CT and compared with each other regarding translational and rotational errors. Aim of this clinical study is to establish a shuttle-based approach for realising MR-guided radiotherapy for certain clinical situations. Second objectives are to compare MR-guided radiotherapy with the gold standard of CT image guidance for quality assurance of radiotherapy, to establish an appropriate MR protocol therefore, and to assess the possibility of using MR-based image guidance not only for position verification but also for adaptive strategies in radiotherapy. DISCUSSION: Compared to CT, MRI might offer the advantage of providing IGRT without delivering an additional radiation dose to the patients and the possibility of optimisation of adaptive therapy strategies due to its superior soft tissue contrast. However, up to now, hybrid MR-linac devices are still under construction and not clinically applicable. For the near future, a shuttle-based approach would be a promising alternative for providing MR-guided radiotherapy, so that the present study was initiated to determine feasibility and safety of such an approach. Besides positioning information, daily MR data under treatment offer the possibility to assess tumor regression and functional parameters, with a potential impact not only on adaptive therapy strategies but also on early assessment of treatment response.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias/radioterapia , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/métodos , Adulto , Humanos , Imageamento Tridimensional , Neoplasias/patologia , Aceleradores de Partículas , Projetos Piloto , Planejamento da Radioterapia Assistida por Computador/efeitos adversos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/efeitos adversos , Radioterapia Guiada por Imagem/instrumentação , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/instrumentação , Recidiva , Tomografia Computadorizada por Raios X
16.
Phys Med Biol ; 48(2): 211-21, 2003 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-12587905

RESUMO

CT, MRI, PET and SPECT provide complementary information for treatment planning in stereotactic radiotherapy. Stereotactic correlation of these images requires commissioning tests to confirm the localization accuracy of each modality. A phantom was developed to measure the accuracy of stereotactic localization for CT, MRI, PET and SPECT in the head and neck region. To this end. the stereotactically measured coordinates of structures within the phantom were compared with their mechanically defined coordinates. For MRI, PET and SPECT, measurements were performed using two different devices. For MRI, T1- and T2-weighted imaging sequences were applied. For each measurement, the mean radial deviation in space between the stereotactically measured and mechanically defined position of target points was determined. For CT, the mean radial deviation was 0.4 +/- 0.2 mm. For MRI, the mean deviations ranged between 0.7 +/- 0.2 mm and 1.4 +/- 0.5 mm, depending on the MRI device and the imaging sequence. For PET, mean deviations of 1.1 +/- 0.5 mm and 2.4 +/- 0.3 mm were obtained. The mean deviations for SPECT were 1.6 +/- 0.5 mm and 2.0 +/- 0.6 mm. The phantom is well suited to determine the accuracy of stereotactic localization with CT, MRI, PET and SPECT in the head and neck region. The obtained accuracy is well below the physical resolution for CT, PET and SPECT, and of comparable magnitude for MRI. Since the localization accuracy may be device dependent, results obtained at one device cannot be generalized to others.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Radiocirurgia/métodos , Tomografia Computadorizada de Emissão/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Aumento da Imagem/normas , Controle de Qualidade , Radiocirurgia/instrumentação , Radiocirurgia/normas , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia Assistida por Computador/instrumentação , Radioterapia Assistida por Computador/métodos , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Técnica de Subtração , Tomografia Computadorizada de Emissão de Fóton Único/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...