Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0485022, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36916941

RESUMO

Modern agriculture has influenced plant virus emergence through ecosystem simplification, introduction of new host species, and reduction in crop genetic diversity. Therefore, it is crucial to better understand virus distributions across cultivated and uncultivated communities in agro-ecological interfaces, as well as virus exchange among them. Here, we advance fundamental understanding in this area by characterizing the virome of three co-occurring replicated Poaceae community types that represent a gradient of grass species richness and management intensity, from highly managed crop monocultures to little-managed, species-rich grasslands. We performed a large-scale study on 950 wild and cultivated Poaceae over 2 years, combining untargeted virome analysis down to the virus species level with targeted detection of three plant viruses. Deep sequencing revealed (i) a diversified and largely unknown Poaceae virome (at least 51 virus species or taxa), with an abundance of so-called persistent viruses; (ii) an increase of virome richness with grass species richness within the community; (iii) stability of virome richness over time but a large viral intraspecific variability; and (iv) contrasting patterns of virus prevalence, coinfections, and spatial distribution among plant communities and species. Our findings highlight the complex structure of plant virus communities in nature and suggest the influence of anthropogenic management on viral distribution and prevalence. IMPORTANCE Because viruses have been mostly studied in cultivated plants, little is known about virus diversity and ecology in less-managed vegetation or about the influence of human management and agriculture on virome composition. Poaceae (grass family)-dominated communities provide invaluable opportunities to examine these ecological issues, as they are distributed worldwide across agro-ecological gradients, are essential for food security and conservation, and can be infected by numerous viruses. Here, we used multiple levels of analysis that considered plant communities, individual plants, virus species, and haplotypes to broaden understanding of the Poaceae virome and to evaluate host-parasite richness relationships within agro-ecological landscapes in our study area. We emphasized the influence of grass diversity and land use on the composition of viral communities and their life history strategies, and we demonstrated the complexity of plant-virus interactions in less-managed grass communities, such as the higher virus prevalence and overrepresentation of mixed virus infection compared to theoretical predictions.

2.
Microorganisms ; 8(3)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121205

RESUMO

Studies in plant-microbiome currently use diverse protocols, making their comparison difficult and biased. Research in human microbiome have faced similar challenges, but the scientific community proposed various recommendations which could also be applied to phytobiome studies. Here, we addressed the isolation of plant microbiota through apple carposphere and lettuce root microbiome. We demonstrated that the fraction of the culturable epiphytic microbiota harvested by a single wash might only represent one-third of the residing microbiota harvested after four successive washes. In addition, we observed important variability between the efficiency of washing protocols (up to 1.6-fold difference for apple and 1.9 for lettuce). QIIME2 analysis of 16S rRNA gene, showed a significant difference of the alpha and beta diversity between protocols in both cases. The abundance of 76 taxa was significantly different between protocols used for apple. In both cases, differences between protocols disappeared when sequences of the four washes were pooled. Hence, pooling the four successive washes increased the alpha diversity for apple in comparison to a single wash. These results underline the interest of repeated washing to leverage abundance of microbial cells harvested from plant epiphytic microbiota whatever the washing protocols, thus minimizing bias.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...