Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 184(4): 1104-1118, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24492198

RESUMO

Impaired glucose tolerance and type 2 diabetes were induced in guinea pigs to model the emerging comorbidity of Mycobacterium tuberculosis infection in diabetic patients. Type 2 diabetes mellitus was induced by low-dose streptozotocin in guinea pigs rendered glucose intolerant by first feeding a high-fat, high-carbohydrate diet before M. tuberculosis exposure. M. tuberculosis infection of diabetic guinea pigs resulted in severe and rapidly progressive tuberculosis (TB) with a shortened survival interval, more severe pulmonary and extrapulmonary pathology, and a higher bacterial burden compared with glucose-intolerant and nondiabetic controls. Compared with nondiabetics, diabetic guinea pigs with TB had an exacerbated proinflammatory response with more severe granulocytic inflammation and higher gene expression for the cytokines/chemokines interferon-γ, IL-17A, IL-8, and IL-10 in the lung and for interferon-γ, tumor necrosis factor-α, IL-8, and monocyte chemoattractant protein-1 in the spleen. TB disease progression in guinea pigs with impaired glucose tolerance was similar to that of nondiabetic controls in the early stages of infection but was more severe by day 90. The guinea pig model of type 2 diabetes-TB comorbidity mimics important features of the naturally occurring disease in humans. This model will be beneficial in understanding the complex pathogenesis of TB in diabetic patients and to test new strategies to improve TB and diabetes control when the two diseases occur together.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/imunologia , Tuberculose/complicações , Tuberculose/imunologia , Animais , Comorbidade , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Citometria de Fluxo , Cobaias , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tuberculose/patologia
2.
PLoS One ; 7(10): e46824, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056469

RESUMO

Hyperglycemia, the diagnostic feature of diabetes also occurs in non-diabetics associated with chronic inflammation and systemic insulin resistance. Since the increased risk of active TB in diabetics has been linked to the severity and duration of hyperglycemia, we investigated what effect diet-induced hyperglycemia had on the severity of Mycobacterium tuberculosis (Mtb) infection in non-diabetic guinea pigs. Post-prandial hyperglycemia was induced in guinea pigs on normal chow by feeding a 40% sucrose solution daily or water as a carrier control. Sucrose feeding was initiated on the day of aerosol exposure to the H37Rv strain of Mtb and continued for 30 or 60 days of infection. Despite more severe hyperglycemia in sucrose-fed animals on day 30, there was no significant difference in lung bacterial or lesion burden until day 60. However the higher spleen and lymph node bacterial and lesion burden at day 30 indicated earlier and more severe extrapulmonary TB in sucrose-fed animals. In both sucrose- and water-fed animals, serum free fatty acids, important mediators of insulin resistance, were increased by day 30 and remained elevated until day 60 of infection. Hyperglycemia mediated by Mtb infection resulted in accumulation of advanced glycation end products (AGEs) in lung granulomas, which was exacerbated by sucrose feeding. However, tissue and serum AGEs were elevated in both sucrose and water-fed guinea pigs by day 60. These data indicate that Mtb infection alone induces insulin resistance and chronic hyperglycemia, which is exacerbated by sucrose feeding. Moreover, Mtb infection alone resulted in the accumulation tissue and serum AGEs, which are also central to the pathogenesis of diabetes and diabetic complications. The exacerbation of insulin resistance and hyperglycemia by Mtb infection alone may explain why TB is more severe in diabetics with poorly controlled hyperglycemia compared to non-diabetics and patients with properly controlled blood glucose levels.


Assuntos
Hiperglicemia/complicações , Mycobacterium tuberculosis/fisiologia , Tuberculose/complicações , Tuberculose/patologia , Animais , Glicemia/metabolismo , Ácidos Graxos não Esterificados/sangue , Teste de Tolerância a Glucose , Produtos Finais de Glicação Avançada/sangue , Cobaias , Hiperglicemia/sangue , Tuberculose/sangue
3.
J Autoimmun ; 33(3-4): 214-21, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19800199

RESUMO

Similarities in the pathologies of autoimmune diseases and cancer have been noted for at least 30 years. Inflammatory cytokines and growth factors mediate cell proliferation, and proteinases, especially the collagenase, Matrix Metalloproteinase-1 (MMP-1), contribute to disease progression by remodeling the extracellular matrix and modulating the microenvironment. This review focuses on two cancers (melanoma and breast) and on the autoimmune disorder, rheumatoid arthritis (RA), and discusses the activated stromal cells found in these diseases. MMP-1 was originally thought to function only to degrade interstitial collagens, but recent studies have revealed novel roles for MMP-1 involving the G protein-coupled receptors: the chemokine receptor, CXCR-4, and Protease Activated Receptor-1 (PAR-1). Cooperativity between MMP-1 and CXCR4/SDF-1 signaling influences the behavior of activated fibroblasts in both RA and cancer. Further, MMP-1 is a vital part of an autocrine/paracrine MMP-1/PAR-1 signal transduction axis, a function that amplifies its potential to remodel the matrix and to modify cell behavior. Finally, new therapeutic agents directed at MMP-1 and G protein-coupled receptors are emerging. Even though these agents are more specific in their targets than past therapies, these targets are often shared between RA and cancer, underscoring fundamental similarities between autoimmune disorders and some cancers.


Assuntos
Artrite Reumatoide/imunologia , Neoplasias da Mama/imunologia , Metaloproteinases da Matriz/metabolismo , Melanoma/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Cutâneas/imunologia , Animais , Anticarcinógenos/uso terapêutico , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Células Endoteliais/imunologia , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Humanos , Metaloproteinases da Matriz/genética , Melanoma/tratamento farmacológico , Receptores Acoplados a Proteínas G/genética , Células Estromais/imunologia
4.
Mol Cancer Res ; 7(7): 1033-44, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19584257

RESUMO

The complex molecular communications that occur between neoplastic and stromal cells within the tumor microenvironment play an integral role in breast cancer pathogenesis. Carcinoma-associated fibroblasts (CAF) produce tumor-enhancing factors and have been strongly implicated in breast cancer development. Similar to the way in which tumors have been compared with "wounds that never heal," CAFs have been equated to activated fibroblasts, which are present in inflammatory environments, in which they aid in wound healing through tissue remodeling and repair. Matrix metalloproteinase-1 (MMP-1) and G protein-coupled receptor, CXCR4, are elevated in these activated fibroblasts, in which they facilitate angiogenesis and matrix degradation, processes that are also vital to breast cancer metastasis. In this study, we investigated MMP-1 and CXCR4 expression in normal human mammary fibroblasts (HMF) exposed to soluble breast cancer factors. Historically, elevated CXCR4 expression is associated with breast cancer cells. However, we show that soluble factors secreted by SUM102 breast cancer cells stimulated the expression of MMP-1 and CXCR4 in HMFs. As a result, these stromal cells acquired an invasive and migratory phenotype. To confirm the clinical relevancy of our findings, we analyzed CAFs obtained from primary breast cancers. These cells also displayed elevated MMP-1 and CXCR4 levels compared with counterpart fibroblasts, and were more invasive and migratory. Together, our data suggest that soluble breast cancer factors initiate the transdifferentiation of normal HMFs to tumor-promoting CAFs, and that through the induction of MMP-1 and CXCR4 levels, these cells exhibit an invasive and migratory phenotype.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fibroblastos/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Receptores CXCR4/metabolismo , Animais , Mama/citologia , Mama/enzimologia , Mama/metabolismo , Neoplasias da Mama/genética , Processos de Crescimento Celular/fisiologia , Movimento Celular/fisiologia , Colágeno Tipo I/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/patologia , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Interleucina-8/metabolismo , Metaloproteinase 1 da Matriz/biossíntese , Metaloproteinase 1 da Matriz/genética , Camundongos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores CXCR4/biossíntese , Receptores CXCR4/genética , Transdução de Sinais
5.
J Cell Physiol ; 207(3): 683-8, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16453302

RESUMO

Interleukin-1 beta (IL-1beta) is a central mediator of inflammation and connective tissue destruction in rheumatoid arthritis. IL-1beta activates articular chondrocytes to produce matrix metalloproteinase-1 (MMP-1), an enzyme capable of dismantling the collagen scaffold of articular cartilage. To define the transcription factors and signaling intermediates that activate MMP-1 transcription in chondrocytes, we performed transient transfection of MMP-1 promoter constructs followed by reporter assays. These studies identified an IL-1beta-responsive region of the human MMP-1 promoter that contains a consensus CCAAT enhancer-binding protein (C/EBP) binding site. Deletion of this site reduced overall transcriptional activity of the MMP-1 promoter, as well as decreased fold induction by IL-1beta. IL-1beta stimulation of chondrocytes increased binding of C/EBP-beta to the MMP-1 C/EBP site. Extracellular signal regulated kinase (ERK) pathway-dependent phosphorylation of C/EBP-beta on threonine 235 activates this transcription factor. Here we show that IL-1beta stimulation of chondrocytes induced phosphorylation of C/EBP-beta on threonine 235, and that the ERK pathway inhibitor PD98059 reduced this phosphorylation. We further show that PD98059 reduces IL-1beta-induced MMP-1 mRNA expression in chondrocytes. Moreover, inhibition of the ERK pathway by expression of dominant-negative forms of ERK1 and ERK2 impaired the ability of IL-1beta to transactivate the MMP-1 promoter. Our findings demonstrate a novel role for C/EBP-beta in IL-1beta-induced connective tissue disease and define a new nuclear target for the ERK pathway in MMP-1 gene activation.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Interleucina-1/farmacologia , Metaloproteinase 1 da Matriz/metabolismo , Animais , Sequência de Bases , Proteína beta Intensificadora de Ligação a CCAAT/genética , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases , Metaloproteinase 1 da Matriz/genética , Dados de Sequência Molecular , Fosforilação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Coelhos , Transcrição Gênica/genética , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...