Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1715: 464600, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38176352

RESUMO

An automated implementation for a subfractionation of mineral oil aromatic hydrocarbons (MOAH) into a mono-/di-aromatic fraction (MDAF) and a tri-/poly-aromatic fraction (TPAF) is presented, which is highly demanded by the European Food Safety Authority (EFSA) respecting the genotoxic and carcinogenic potential of MOAH. For this, donor-acceptor-complex chromatography (DACC) was used as a selective stationary phase to extend the conventional instrumental setup for the analysis of mineral oil hydrocarbons via on-line coupled liquid chromatography-gas chromatography-flame ionization detection (LC-GC-FID). A set of six new internal standards was introduced for the verification of the MOAH fractionation and a quantification of MDAF and TPAF, respectively. The automated DACC approach was applied to representative petrochemical references as well as to food samples, such as rice and infant formula, generally showing well conformity with results obtained by state-of-the-art analysis using two-dimensional GC (GCxGC). Relative deviations of DACC/LC-GC-FID compared to GCxGC-FID methods regarding the ≥ 3 ring MOAH content ranged between -50 and +6 % (median: -2 %, all samples, only values above limit of quantification). However, crucial deviations mainly result from "border-crossing" substances, e.g., dibenzothiophenes or partially hydrogenated MOAH. These substances can cause overestimations of ≥ 3 ring MOAH fraction during GCxGC analysis due to co-elution, which is mostly avoided using the DACC approach. Furthermore, the DACC approach can help to minimize underestimations of toxicologically relevant ≥ 3 ring MOAH caused by an unavoidable loss of MOAH during epoxidation, since natural olefins, such as terpenes, predominantly elute in MDAF, which was exemplarily shown for an olive oil and a terpene reference. The presented approach can be implemented easily in existing LC-GC-FID setup for an automated and advanced screening of MOAH to lower the need for elaborate GCxGC analysis also in routine environments.


Assuntos
Hidrocarbonetos Aromáticos , Óleo Mineral , Humanos , Óleo Mineral/análise , Contaminação de Alimentos/análise , Hidrocarbonetos Aromáticos/análise , Cromatografia Gasosa/métodos , Cromatografia Líquida/métodos , Hidrocarbonetos/análise , Terpenos/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-37489979

RESUMO

Tritan™ (a kind of glycol-modified polycyclohexylene dimethylene terephthalate) is a novel copolyester mainly in use for the production of sports bottles and food storage containers. Oligomers in three food-grade Tritan™ samples were identified after dissolution-precipitation by high performance liquid chromatography with diode array detection and mass spectrometry and quantified after alkaline hydrolysis to the monomers. The obtained overall oligomer content <1000 Da determined by hydrolysis ranged from 7.2 to 10.6 mg/g material. Three consecutive migration experiments were performed according to the Commission Regulation (EU) No 10/2011. Oligomer migration values decreased from first to third migration during all simulations. Less than 25 µg/kg (third migrate) were detected in bottle migrates when tested under room temperature storage conditions (40 °C, 24 h) with simulants 3% acetic acid, 20 and 50% ethanol and during hot-fill testing (70 °C, 2 h) with simulants 3% acetic acid and 20% ethanol, respectively, while 170 µg/kg were determined in 50% ethanol after migration at 70 °C for 2 h. Food storage containers that were labelled as microwave-suitable by the supplier were tested according to the Joint Research Centre recommendations for microwave dishware. A strong deformation of the containers as well as a loss of transparency were observed during the tests (100 °C, 2 h with 10% ethanol and 3% acetic acid in an autoclave, 121 °C, 30 min with sunflower oil), questioning the suitability of the material for microwave applications. Maximum oligomer migration was 379 µg/kg during the third migration (sunflower oil at 121 °C for 30 min). Based on the migration data and an in silico oligomer evaluation according to the threshold of toxicological concern concept, no exceedances of daily thresholds for oligomers are expected from a proper use of Tritan™ drinking bottles, even with hot drinks.


Assuntos
Contaminação de Alimentos , Embalagem de Alimentos , Plásticos , Hidrólise , Plásticos/efeitos adversos , Plásticos/química , Poliésteres
3.
Artigo em Inglês | MEDLINE | ID: mdl-36206019

RESUMO

Oligomers are a significant group of migrating substances from food contact materials made of polyesters like polybutylene terephthalate (PBT). Twenty-three cyclic and linear oligomers with different end groups including olefin-terminated oligomers, which are associated with thermal stress of the material, were tentatively identified in PBT extracts by high-performance liquid chromatography with mass spectrometry and diode array detection. Quantification approaches based on chromophore concentration, relative response factors, and overall oligomer determination after hydrolysis to the monomer terephthalic acid were employed. An exhaustive extraction of thirteen PBT samples yielded an overall oligomer content of 1.87-6.10 mg/g material (sum of individual oligomers < 1,000 Da) with a predominant content of cyclic over linear oligomers. Migration experiments were performed according to Regulation (EU) No. 10/2011 using the official food simulants as well as cows' milk. A total of 218 µg cyclic oligomers/L milk were detected in the third migrate relevant for risk assessment of repeated-use articles under hot-fill conditions (70 °C, 2 h). The official food simulant for milk, 50% ethanol, was found to overestimate the actual migration into milk by a factor of four. Frying conditions using sunflower oil as the food simulant (200 °C, 10 min) resulted in a migration of 7.5 mg cyclic oligomers/kg oil. The exposure to migrating oligomers is critical in some scenarios when evaluated by the threshold of toxicological concern concept; however, the toxicological evaluation poses a challenge due to the possible hydrolysis of cyclic oligomers in the human gastrointestinal tract. Our experiments display the need for a toxicological evaluation of PBT oligomers because the migration of cyclic oligomers is expected to exceed the current in silico-based thresholds under foreseeable conditions of use.


Assuntos
Contaminação de Alimentos , Embalagem de Alimentos , Animais , Bovinos , Feminino , Humanos , Contaminação de Alimentos/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Medição de Risco
4.
Artigo em Inglês | MEDLINE | ID: mdl-32706303

RESUMO

Resoles are multifarious pre-polymeric resins produced by the condensation of basic chemicals phenols, formaldehyde and optionally aliphatic alcohols like butanol. They are widely used as cross-linkers to form resistant internal coatings on metal surfaces of cans, containers or closures. Although the application of resoles is common in food contact, usually little is known about their exact composition, the toxicological hazards of their individual constituents and the migration of phenolic compounds, e.g., of the potentially endocrine-disrupting chemical bisphenol F. Our study fills major gaps of knowledge in risk assessment, using the example of a two-layer polyester-phenol coating system, which is based on three different resoles and is commercially used for closures of infant food glass jars. Various analytical approaches, namely size-exclusion chromatography, nuclear magnetic resonance spectroscopy, liquid chromatography coupled to mass spectrometry, fluorescence and diode array detection as well as gas chromatography-mass spectrometry were evaluated to quantitatively characterise resoles. Additionally, derivatisation with dansyl chloride as well as Folin-Ciocalteu colorimetric assay was adapted first times to determine the total phenol content from technical resoles. Individual mono- and bisphenols were determined in resoles up to about 120 mg/g, while the concentration of bisphenol F isomers was below 10 mg/g. Migration from the coating system was determined after sterilisation (121°C, 1 h, 20% ethanol). Results were ~2 µg/dm2 for identified individual mono-phenols like 2-hydroxybenzyl alcohol and up to ~120 µg/dm2 for total phenolic compounds, representing approximately 7% of the overall migration. The migration of bisphenol F isomers was negligible below 0.3 µg/dm2. Potential exposure to migrating phenols was assessed based on the threshold of toxicological concern concept to be significantly below for individual phenols and in the same order of magnitude for total phenols compared to the respective thresholds calculated for infants.


Assuntos
Contaminação de Alimentos/análise , Embalagem de Alimentos , Fenóis/análise , Poliésteres/análise , Resinas Sintéticas/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-31140944

RESUMO

Coatings for cans or closures are essential to protect the metal from corrosion and the food from migration of hazardous metal ions. Since coatings are no inert materials, they can release substances of potential health concern into food. In the present study, a comprehensive analysis is presented for a complex two-layered polyester-phenol-coating commercially used for metal closures of complementary infant food in sterilised glass jars. Focussed on the identity and migration of cyclic polyester oligomers as a kind of predictable non-intentionally added substances, polyester resin raw materials (n = 3) as well as individual coating layers (n = 3) were characterised by several analytical strategies (size exclusion chromatography, high-performance liquid chromatography mass spectrometry, diode array detection, charged aerosol detection, monomer determination after alkaline hydrolysis, overall migrate). The main polyester monomers were terephthalic acid, isophthalic acid, trimellitic acid, ethylene glycol, diethylene glycol, neopentylglycol, 2-methyl-1,3-propanediol, 1,4-butanediol and tricyclodecanedimethanol. The coatings were extracted with solvents acetonitrile and ethanol (24 h, 60°C), food simulants 50% ethanol, 20% ethanol and water (1 h, 121°C) as well as homemade and commercial baby food (1 h, 121°C). The released total polyester content determined by alkaline hydrolysis ranged from 288 µg/dm2 (water, 1 h, 121°C) to 6154 µg/dm2 (acetonitrile, 24 h, 60°C). However, individual cyclic oligomers, mainly dimers, were released from the coating to up to about 140 µg/dm2. Migration into infant food was best represented by the food simulants water (up to 1% fat) and 20% ethanol (up to 5% fat). Cyclic polyester oligomers are classified as Cramer III substances by the threshold of toxicological concern concept associated to an exposure threshold of 1.5 µg/kg body weight per day. Exposure to cyclic polyester oligomers might be a potential concern for highly exposed infants.


Assuntos
Compostos Benzidrílicos/química , Análise de Alimentos , Contaminação de Alimentos/análise , Embalagem de Alimentos , Alimentos Infantis/análise , Fenóis/química , Poliésteres/análise , Resinas Sintéticas/análise , Humanos , Lactente , Teste de Materiais
6.
J Chromatogr A ; 1609: 460437, 2020 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31409488

RESUMO

Thermal papers (e.g. point of sale receipts, adhesive labels, tickets) significantly contribute to contamination of paper material cycles and the environment with substances of (eco-) toxicological concern. In particular, they contain color developers like endocrine disrupting bisphenols in typical concentrations of about 1-2 percent per weight (wt%). Bisphenol A (BPA) was used as the common color developer over the last decades, but it will be restricted for thermal paper application in the European Union to a limit of 0.02 wt% from 2020 onwards. Consequently, a variety of BPA substituents such as bisphenol S (BPS) and its derivatives gain importance in thermal paper application. In this study, a rapid, reliable and cost-effective method for identification and quantification of BPA, alternative color developers and related substances like sensitizers is presented based on HPLC separation coupled with diode array detection (DAD) and Corona charged aerosol detection (CAD). Quantification was performed with regard to the intended use of the substances in thermal papers. Besides traditional UV external calibration using reference standards, alternative quantification approaches, in particular UV chromophore concentration for BPS derivatives and CAD universal response technique for low-volatile color developers, were applied and compared in order to allow quantification without reference substances. A market analysis for intended used color developers and sensitizers was performed on thermal paper samples (n = 211) collected in Germany during 2018 and 2019. Pergafast 201 (in 41.7% of the samples) was the most common color developer with concentrations above 0.02 wt%, followed by BPA (36.0%), BPS (13.3%) and other BPS derivatives known as D8, D-90, BPS-MAE and TGSA, that are mainly present in adhesive labels. Sensitizers were determined in over 90% of the samples.


Assuntos
Aerossóis/análise , Compostos Benzidrílicos/análise , Marketing , Papel , Fenóis/análise , Temperatura , Compostos Benzidrílicos/química , Calibragem , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Cor , Disruptores Endócrinos/análise , União Europeia , Alemanha , Limite de Detecção , Modelos Lineares , Fenóis/química , Padrões de Referência , Sulfonas
7.
Artigo em Inglês | MEDLINE | ID: mdl-31479389

RESUMO

Linear and cyclic oligomers are unavoidable non-intentionally added substances (NIAS) present in food contact materials made from common polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT) and polyester coatings. Although polyester oligomers can migrate into fats in significant amounts in high-temperature processes such as baking or frying, little is known about their toxicological properties and their behaviour in the human gastrointestinal tract. In the present study, first indications of a possible digestibility of polyester oligomers formed from the commonly used aromatic dicarboxylic acid terephthalic acid (TPA) are provided by in vitro experiments. Three cyclic polyester oligomers originated from PET (trimer) and PBT (dimer and trimer) were extracted from the raw materials, isolated and subjected to a simulated intestinal digestion. A fast cleavage (≥75% of the initial amount) of all three cyclic oligomers into their linear counterparts was detected already within the first hour of in vitro intestinal incubation. Subsequent hydrolysis to shorter chained linear oligomers was determined especially for the PET cyclic trimer. Degradation down to the monomer TPA was not observed. In terms of risk assessment and prioritisation for non-evaluated NIAS, the threshold of toxicological concern (TTC) concept is an appropriate tool. While cyclic polyester oligomers based on TPA are assigned to the TTC Cramer class III (high potential concern, exposure threshold 1.5 µg/kg body weight per day), the corresponding linear oligomers are expected to be of a lower probable toxicological concern (Cramer class I, 30 µg/kg body weight per day). A cleavage of cyclic polyester oligomers under human intestinal conditions, which was assessed to be likely by the provided in vitro experiments, could consequently affect the risk assessment on polyester oligomers.


Assuntos
Contaminação de Alimentos/análise , Poliésteres/análise , Polietilenotereftalatos/análise , Embalagem de Alimentos , Humanos
8.
J Chromatogr A ; 1572: 187-202, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30153980

RESUMO

In terms of risk assessment especially for known and unknown substances migrating from food contact materials, quantification without corresponding reference substances currently poses a challenge. In the present study, the opportunity of a universal response quantification approach was evaluated by using a corona charged aerosol detector (CAD) for liquid chromatography combined with inverse gradient compensation. Characteristics of CAD detection in dependence of substance properties were analyzed with 46 randomly chosen reference substances. An almost equal CAD response (±20%) was achieved for non-volatile substances with a molecular weight of minimum 400 g/mol and a vapor pressure of maximum 10-8 Torr. We empirically defined an analytical parameter, Q50/35, the quotient of CAD peak areas at CAD evaporator temperatures of 50 °C and 35 °C, to predict the adequacy of the CAD universal response approach for quantification of known and unknown analyte substances. Exemplarily, we applied the CAD universal quantification approach for the determination of extractable oligomers below 1000 g/mol from a variety of food contact polycondensate plastic materials (e.g. polyesters like polyethylene terephthalate, polybutylene terephthalate, Tritan copolyester, polyamides 6, 6.6 and 6 T/6I and polyarylsulfones polyphenylsulfone and polyethersulfone). Quantitative results for in total 44 oligomers out of 11 materials were compared with established material-specific quantification methods using extracted oligomer mixtures as well as individual oligomers isolated from the mixtures. CAD-based quantification results were generally in accordance to published quantification approaches for polyamide oligomers and oligomers from polyarylsulfones. For oligomers extracted and isolated from polyester materials a slight underestimation was determined by CAD universal response approach. In terms of detection limits and accuracy, the universal CAD approach exhibits no advantages compared to established UV-methods, to date.


Assuntos
Aerossóis/química , Nylons/química , Poliésteres/química , Polímeros/química , Sulfonas/química , Adipatos/análise , Adipatos/isolamento & purificação , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa , Ácidos Dicarboxílicos/análise , Ácidos Dicarboxílicos/isolamento & purificação , Embalagem de Alimentos , Peso Molecular
9.
Artigo em Inglês | MEDLINE | ID: mdl-29537947

RESUMO

Polyphenylsulfone (PPSU) is a new material for the production of baby bottles. PPSU is a polyether plastic formally composed of bisphenol S (BPS) and 4,4'-dihydroxybiphenyl (DHBP), which both have slight endocrine activities in in vitro tests. So far, little is known about the presence and the release of potentially hazardous substances from PPSU baby bottles. In this study, we present a three-step approach for the analysis of PPSU starting with polymer characterisation in terms of chemical structure, total oligomer content and hydrolytic stability. Second is the determination of extractables focussing on monomers, monomer derivatives, linear and cyclic oligomers below 1000 Da and residual solvent. Third is a risk assessment on migration-related substances in accordance to European Union plastics regulation no. 10/2011 based on triplicate consecutive migration experiments using official milk simulant 50% ethanol. We analysed five types of PPSU baby bottles from different brands as well as corresponding raw materials from different manufacturers by various analytical techniques (high-performance liquid chromatography (HPLC)-diode array detector /fluorescence detector/Corona/electrospray ionisation-MS, HPLC-size exclusion chromatography, gas chromatography-mass spectrometry (GC-MS), 1H-NMR). We found significant variations of PPSU materials from different producers with regard to polymer and oligomer chain end groups (methoxylation, chlorination), while total oligomer content below 1000 Da was similar (mean about 0.48%). BPS was not detected above 0.3 mg/kg polymer in any PPSU sample. Residual DHBP content ranged between 1.7 and 15.5 mg/kg polymer. The most common oligomer in all PPSU samples was the cyclic tetramer (about 1200 mg/kg polymer), which is the only cyclic compound below 1000 Da. Residual solvent, sulfolane, was determined to a maximum of 1300 mg/kg polymer. In migration tests, we detected exceedances of neither specific migration limits for listed substances nor of thresholds of toxicological concern for non-listed substances (monomer derivatives, oligomers). Based on our analytical results, no concerns exist regarding migration of polymer-related substances from PPSU baby bottles.


Assuntos
Contaminação de Alimentos/análise , Embalagem de Alimentos , Plásticos/análise , Polímeros/análise , Sulfonas/análise , Cromatografia em Gel , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Lactente , Polímeros/síntese química , Espectrometria de Fluorescência
10.
Chemosphere ; 186: 1016-1025, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28838039

RESUMO

Bisphenol A (BPA) was commonly used as color developer for thermal paper such as cash register receipts, labels or tickets. Therefore, thermal paper was considered by the European Food Safety Authority (EFSA) as the main source of human exposure to BPA beside epoxy based food contact materials. In this study, a German market analysis on the use of BPA and alternative color developers in thermal paper receipts is provided for the years 2015, 2016 and 2017.114 (2015), 98 (2016) and 99 (2017) samples were randomly collected and analyzed by HPLC-DAD. In summary, BPA was still the most frequently found color developer (48.2% in 2015, 46.9% in 2016 and 52.5% in 2017). The most commonly used alternative was the phenol-free substance Pergafast® 201 (34.2%, 33.7%, 40.4%). The bisphenol analogs bisphenol S (BPS; 11.4%, 9.2%, 6.1%) and D8 (6.1%, 7.1%, 1.0%) were less common. Another phenol-free substituent, a urea urethane compound (UU), was also detected (3.1% in 2016). Concentrations of color developers in thermal paper ranged from 1.4 to 32.4 mg/g (median values between 2.5 and 15.9 mg/g). Concentrations of BPA were found to be highest followed by BPS, UU, Pergafast® 201 and D8. In addition, two pharmacologically active substances, dapsone (6.0 mg/g) and tolbutamide (5.5 mg/g), were detected in a non-marketed thermal paper, that was supposed to use ascorbic acid as initial color developer. Different release experiments of the detected color developers were performed. Sensitizers 1,2-diphenoxy-ethane, 1-phenylmethoxy-naphthalene and diphenylsulfone, used frequently in the thermal paper processes, were quantified.


Assuntos
Compostos Benzidrílicos/análise , Papel/normas , Fenóis/análise , Cromatografia Líquida de Alta Pressão , Exposição Ambiental/análise , Poluentes Ambientais/análise , Humanos , Exposição Ocupacional/análise , Absorção Cutânea , Sulfonas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...