Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1106075, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860523

RESUMO

Introduction: We have previously shown that the novel positive allosteric modulator of the GABAA receptor, HK4, exerts hepatoprotective effects against lipotoxicity-induced apoptosis, DNA damage, inflammation and ER stress in vitro. This might be mediated by downregulated phosphorylation of the transcription factors NF-κB and STAT3. The current study aimed to investigate the effect of HK4 on lipotoxicity-induced hepatocyte injury at the transcriptional level. Methods: HepG2 cells were treated with palmitate (200 µM) in the presence or absence of HK4 (10 µM) for 7 h. Total RNA was isolated and the expression profiles of mRNAs were assessed. Differentially expressed genes were identified and subjected to the DAVID database and Ingenuity Pathway Analysis software for functional and pathway analysis, all under appropriate statistical testing. Results: Transcriptomic analysis showed substantial modifications in gene expression in response to palmitate as lipotoxic stimulus with 1,457 differentially expressed genes affecting lipid metabolism, oxidative phosphorylation, apoptosis, oxidative and ER stress among others. HK4 preincubation resulted in the prevention of palmitate-induced dysregulation by restoring initial gene expression pattern of untreated hepatocytes comprising 456 genes. Out of the 456 genes, 342 genes were upregulated and 114 downregulated by HK4. Enriched pathways analysis of those genes by Ingenuity Pathway Analysis, pointed towards oxidative phosphorylation, mitochondrial dysregulation, protein ubiquitination, apoptosis, and cell cycle regulation as affected pathways. These pathways are regulated by the key upstream regulators TP53, KDM5B, DDX5, CAB39 L and SYVN1, which orchestrate the metabolic and oxidative stress responses including modulation of DNA repair and degradation of ER stress-induced misfolded proteins in the presence or absence of HK4. Discussion: We conclude that HK4 specifically targets mitochondrial respiration, protein ubiquitination, apoptosis and cell cycle. This not only helps to counteract lipotoxic hepatocellular injury through modification of gene expression, but - by targeting transcription factors responsible for DNA repair, cell cycle progression and ER stress - might even prevent lipotoxic mechanisms. These findings suggest that HK4 has a great potential for the treatment of non-alcoholic fatty liver disease (NAFLD).

2.
Mol Metab ; 67: 101650, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470401

RESUMO

OBJECTIVE: Beta cell dysfunction and death are critical steps in the development of both type 1 and type 2 diabetes (T1D and T2D), but the underlying mechanisms are incompletely understood. Activation of the essential tumor suppressor and transcription factor P53 (also known as TP53 and Trp53 in mice) was linked to beta cell death in vitro and has been reported in several diabetes mouse models and beta cells of humans with T2D. In this article, we set out to determine the beta cell specific role of P53 in beta cell dysfunction, cell death and development of diabetes in vivo. METHODS: We generated beta cell specific P53 knockout (P53BKO) mice and used complementary genetic, dietary and pharmacological models of glucose intolerance, beta cell dysfunction and diabetes development to evaluate the functional role of P53 selectively in beta cells. We further analyzed the effect of P53 ablation on beta cell survival in isolated pancreatic islets exposed to diabetogenic stress inducers ex vivo by flow cytometry. RESULTS: Beta cell specific ablation of P53/Trp53 failed to ameliorate glucose tolerance, insulin secretion or to increase beta cell numbers in genetic, dietary and pharmacological models of diabetes. Additionally, loss of P53 in beta cells did not protect against streptozotocin (STZ) induced hyperglycemia and beta cell death, although STZ-induced activation of classical pro-apoptotic P53 target genes was significantly reduced in P53BKO mice. In contrast, Olaparib mediated PARP1 inhibition protected against acute ex vivo STZ-induced beta cell death and islet destruction. CONCLUSIONS: Our study reveals that ablation of P53 specifically in beta cells is unexpectedly unable to attenuate beta cell failure and death in vivo and ex vivo. While during development and progression of diabetes, P53 and P53-regulated pathways are activated, our study suggests that P53 signaling is not essential for loss of beta cells or beta cell dysfunction. P53 in other cell types and organs may predominantly regulate systemic glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Camundongos , Animais , Células Secretoras de Insulina/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Glucose/metabolismo
3.
Diabetes Obes Metab ; 24(8): 1498-1508, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35434888

RESUMO

AIM: To determine if a novel positive allosteric modulator of the γ-aminobutyric acid type A (GABAA ) receptor, the thioacrylamide-derivative HK4, which does not penetrate the blood-brain barrier, protects human hepatocytes against lipotoxicity-induced injury. MATERIALS AND METHODS: Allosteric modulation of the GABAA receptor by HK4 was determined by patch clamp in HEK-293 cells, calcium influx in INS-1E cells and by using the specific GABAA channel blockers picrotoxin and tert-butylbicyclophosphorothionate (TBPS) in HepG2 cells. Apoptosis was analysed using caspase 3/7, terminal deoxynucleotidyl transferase-dUTP nick end labelling (TUNEL) and array assays in HepG2 cells and/or human primary hepatocytes. Phosphorylation of STAT3 and the NF-κB subunit p65, protein disulphide isomerase (PDI) and poly-ADP-ribose polymerase-1 (PARP-1) was detected by Western blotting. RESULTS: Patch clamping, calcium influx measurements and apoptosis assays with the non-competitive GABAA channel blockers picrotoxin and TBPS proved HK4 as a selective positive allosteric modulator of the GABAA receptor. In HepG2 cells, which expressed the main GABAA receptor subunits, HK4 prevented palmitate-induced apoptosis. This protective effect was mediated by downregulation of caspase 3/7 activity and was additionally verified by TUNEL assay. HK4 effectively prevented palmitate-induced apoptosis in human primary hepatocytes. HK4 reduced STAT3 and NF-κB phosphorylation, reduced cleaved PARP-1 expression and upregulated the endoplasmic reticulum (ER) chaperone PDI. CONCLUSIONS: HK4 reduced lipotoxic-induced apoptosis by preventing inflammation, DNA damage and ER stress. We propose that the effect of HK4 is mediated by STAT3 and NF-κB. It is suggested that thioacrylamide compounds represent an innovative pharmacological tool to treat or prevent non-alcoholic steatohepatitis as first-in-class drugs.


Assuntos
Receptores de GABA-A , Receptores de GABA , Apoptose , Cálcio/metabolismo , Caspase 3/metabolismo , Células HEK293 , Hepatócitos , Humanos , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Palmitatos/metabolismo , Palmitatos/farmacologia , Picrotoxina/metabolismo , Picrotoxina/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Receptores de GABA/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
4.
Front Endocrinol (Lausanne) ; 12: 693683, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659107

RESUMO

The rs540467 SNP in the NDUFB6 gene, encoding a mitochondrial complex I subunit, has been shown to modulate adaptations to exercise training. Interaction effects with diabetes mellitus remain unclear. We assessed associations of habitual physical activity (PA) levels with metabolic variables and examined a possible modifying effect of the rs540467 SNP. Volunteers with type 2 (n=242), type 1 diabetes (n=250) or normal glucose tolerance (control; n=139) were studied at diagnosis and subgroups with type 1 (n=96) and type 2 diabetes (n=95) after 5 years. Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamps, oxygen uptake at the ventilator threshold (VO2AT) by spiroergometry and PA by questionnaires. Translational studies investigated insulin signaling and mitochondrial function in Ndufb6 siRNA-treated C2C12 myotubes, with electronic pulse stimulation (EPS) to simulate exercising. PA levels were 10 and 6%, VO2AT was 31% and 8% lower in type 2 and type 1 diabetes compared to control. Within 5 years, 36% of people with type 2 diabetes did not improve their insulin sensitivity despite increasing PA levels. The NDUFB6 rs540467 SNP modifies PA-mediated changes in insulin sensitivity, body composition and liver fat estimates in type 2 diabetes. Silencing Ndufb6 in myotubes reduced mitochondrial respiration and prevented rescue from palmitate-induced insulin resistance after EPS. A substantial proportion of humans with type 2 diabetes fails to respond to rising PA with increasing insulin sensitivity. This may at least partly relate to a polymorphism of the NDUFB6 gene, which may contribute to modulating mitochondrial function. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT01055093. The trial was retrospectively registered on 25th of January 2010.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Complexo I de Transporte de Elétrons/genética , Exercício Físico/fisiologia , Adulto , Animais , Composição Corporal/genética , Estudos de Casos e Controles , Células Cultivadas , Feminino , Seguimentos , Estudos de Associação Genética , Alemanha , Técnica Clamp de Glucose , Humanos , Estudos Longitudinais , Masculino , Camundongos , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Polimorfismo de Nucleotídeo Único , Adulto Jovem
5.
Front Pharmacol ; 11: 1161, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848769

RESUMO

COVID-19 outbreak, caused by severe acute respiratory syndrome (SARS)-CoV-2 coronavirus has become an urgent health and economic challenge. Diabetes is a risk factor for severity and mortality of COVID-19. Recent studies support that COVID-19 has effects beyond the respiratory tract, with vascular complications arising as relevant factors worsening its prognosis, then making patients with previous vascular disease more prone to severity or fatal outcome. Angiotensin-II converting enzime-2 (ACE2) has been proposed as preferred receptor for SARS-CoV-2 host infection, yet specific proteins participating in the virus entry are not fully known. SARS-CoV-2 might use other co-receptor or auxiliary proteins allowing virus infection. In silico experiments proposed that SARS-CoV-2 might bind dipeptidyl peptidase 4 (DPP4/CD26), which was established previously as receptor for MERS-CoV. The renin-angiotensin-aldosterone system (RAAS) component ACE2 and DPP4 are proteins dysregulated in diabetes. Imbalance of the RAAS and direct effect of soluble DPP4 exert deleterious vascular effects. We hypothesize that diabetic patients might be more affected by COVID-19 due to increased presence ACE2 and DPP4 mediating infection and contributing to a compromised vasculature. Here, we discuss the role of ACE2 and DPP4 as relevant factors linking the risk of SARS-CoV-2 infection and severity of COVID-19 in diabetic patients and present an outlook on therapeutic potential of current drugs targeted against RAAS and DPP4 to treat or prevent COVID-19-derived vascular complications. Diabetes affects more than 400 million people worldwide, thus better understanding of how they are affected by COVID-19 holds an important benefit to fight against this disease with pandemic proportions.

6.
Am J Physiol Endocrinol Metab ; 318(5): E590-E599, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31891536

RESUMO

Besides a therapeutic target for type 2 diabetes, dipeptidyl peptidase 4 (DPP4) is an adipokine potentially upregulated in human obesity. We aimed to explore the role of adipocyte-derived DPP4 in diet-induced obesity and insulin resistance with an adipose tissue-specific knockout (AT-DPP4-KO) mouse. Wild-type and AT-DPP4-KO mice were fed for 24 wk with a high fat diet (HFD) and characterized for body weight, glucose tolerance, insulin sensitivity by hyperinsulinemic-euglycemic clamp, and body composition and hepatic fat content. Image and molecular biology analysis of inflammation, as well as adipokine secretion, was performed in AT by immunohistochemistry, Western blot, real-time-PCR, and ELISA. Incretin levels were determined by Luminex kits. Under HFD, AT-DPP4-KO displayed markedly reduced circulating DPP4 concentrations, proving AT as a relevant source. Independently of glucose-stimulated incretin hormones, AT-DPP4-KO had improved glucose tolerance and hepatic insulin sensitivity. AT-DPP4-KO displayed smaller adipocytes and increased anti-inflammatory markers. IGF binding protein 3 (IGFBP3) levels were lower in AT and serum, whereas free IGF1 was increased. The absence of adipose DPP4 triggers beneficial AT remodeling with decreased production of IGFBP3 during HFD, likely contributing to the observed, improved hepatic insulin sensitivity.


Assuntos
Tecido Adiposo/metabolismo , Dipeptidil Peptidase 4/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Obesidade/metabolismo , Adipócitos/metabolismo , Adipocinas/metabolismo , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Dipeptidil Peptidase 4/genética , Imuno-Histoquímica , Insulina/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Masculino , Camundongos , Obesidade/etiologia , Obesidade/genética
7.
Diabetologia ; 62(9): 1523-1528, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31263909

RESUMO

Physical activity exerts multiple beneficial effects and the myokine concept provides a framework for understanding the molecular pathways that integrate contracting muscle in the complex network of organ communication. This network includes multiple distinct and distal organs; however, the autocrine and paracrine effects of myokines within skeletal muscle (in which they are produced) also need specific attention. In humans, the functional allocation of myokines remains limited and recent findings on fibre type-specific myokine signatures point to an additional level of complexity. Myokines are involved in the anti-inflammatory effect of physical activity and, therefore, critically counteract insulin resistance and the metabolic perturbations of obesity and type 2 diabetes. Future work needs to address the role of myokines in concert with other crosstalk molecules, and to define their specific impact for metabolic homeostasis.


Assuntos
Citocinas/metabolismo , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Homeostase/fisiologia , Humanos , Resistência à Insulina/fisiologia
8.
Sci Rep ; 8(1): 12816, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143687

RESUMO

Inflammation plays a significant role in pathogenesis of diabetes and atherosclerosis. Increased adiposity with an upregulation of cytokines in prediabetes has been associated with vascular inflammation and considered a leading causal factor for type 2 diabetes (T2D). Information on adipokines and inflammatory markers in prediabetes, defined by hemoglobin A1C (HbA1c) 5.7-6.4% in addition to impaired fasting glucose (IFG) and impaired glucose tolerance (IGT), are sparse. We conducted a population-based cross-sectional study (part of a follow-up study) of inhabitants of Oulu, Finland, born in 1935. Inflammatory markers and traditional risk markers of 367 subjects were measured. The glucose status was determined by an oral glucose tolerance test (OGTT) and HbA1c. Inflammatory markers and glycemic levels were analysed using analysis of covariance (ANCOVA). Of the participants, 193 were normoglycemic, 82 had prediabetes and 40 T2D. Inflammatory cytokines were significantly higher in subjects with prediabetes as compared to normoglycemic subjects: IL-4 (14.9 vs 5.9 pg/ml, p = 0.041), IP-10 (251 vs 209 pg/ml, p = 0.05), TNF-α (10.4 vs 6.9 pg/ml, p = 0.027), RANTES (43.3 vs 33.1 pg/ml, p = 0.009), CD40L (3708 vs 1671 pg/ml, p = 0.010) and VEGF (269 vs 174 pg/ml, p = 0.013). These inflammatory cytokines remained significant even after adjustment for waist circumference. The differences in inflammatory markers in prediabetic and T2D subjects were not statistically significant. Prediabetes was associated with low-grade inflammation with increased inflammatory cytokine levels, while the levels in prediabetic subjects were comparable to those in T2D subjects. The associations were independent of visceral adiposity.


Assuntos
Adipocinas/sangue , Doenças Cardiovasculares/sangue , Diabetes Mellitus Tipo 2/sangue , Mediadores da Inflamação/sangue , Idoso , Biomarcadores/sangue , Doenças Cardiovasculares/complicações , Diabetes Mellitus Tipo 2/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estado Pré-Diabético/sangue , Fatores de Risco , Estatísticas não Paramétricas
9.
Obesity (Silver Spring) ; 25(12): 2108-2114, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29024428

RESUMO

OBJECTIVE: Heat shock protein 60 (Hsp60) is an adipokine, and its serum concentrations are higher in patients with obesity compared to lean patients. This study aimed to analyze the effect of bariatric surgery on circulating concentrations of Hsp60 in morbid obesity and their correlation with inflammation and metabolic and cardiovascular risk. METHODS: Fifty-three females with morbid obesity undergoing bariatric surgery were enrolled. Serum parameters and anthropometric measures were obtained at baseline and 3 to 12 months post surgery. RESULTS: During the 12-month observation period, Hsp60 decreased significantly from 31.6 ± 4.7 ng/mL at baseline to 22.3 ± 3.0 ng/mL (3 months), 26.5 ± 5.5 (6 months), and 21.1 ± 3.3 ng/mL (12 months). Preoperatively, Hsp60 concentrations correlated positively with total cholesterol, low-density lipoprotein cholesterol, and apolipoprotein B (ApoB) and negatively with adiponectin. At the end of the observation period, serum Hsp60 positively correlated with triglycerides, ApoB, HbA1c , and C-reactive protein (CRP). Patients in the highest quartile of serum Hsp60 were characterized by significantly elevated CRP and interleukin 6 independently of BMI, glycemia, and insulinemia. At baseline and 12 months after surgery, Hsp60 positively correlated with the ApoB/ApoA1 ratio and the cholesterol/high-density lipoprotein cholesterol ratio. CONCLUSIONS: Hsp60 concentrations are elevated in morbid obesity and decreased after surgery-induced weight loss. Their correlation with inflammatory markers and cardiovascular risk might link obesity and cardiovascular disease.


Assuntos
Cirurgia Bariátrica/efeitos adversos , Doenças Cardiovasculares/etiologia , Chaperonina 60/metabolismo , Inflamação/sangue , Obesidade Mórbida/cirurgia , Adulto , Cirurgia Bariátrica/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/patologia , Fatores de Risco
10.
Diabetes ; 66(11): 2800-2807, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28811274

RESUMO

Skeletal muscle insulin resistance is the hallmark of type 2 diabetes and develops long before the onset of the disease. It is well accepted that physical activity improves glycemic control, but the knowledge on underlying mechanisms mediating the beneficial effects remains incomplete. Exercise is accompanied by a decrease in intramuscular oxygen levels, resulting in induction of HIF-1α. HIF-1α is a master regulator of gene expression and might play an important role in skeletal muscle function and metabolism. Here we show that HIF-1α is important for glucose metabolism and insulin action in skeletal muscle. By using a genome-wide gene expression profiling approach, we identified RAB20 and TXNIP as two novel exercise/HIF-1α-regulated genes in skeletal muscle. Loss of Rab20 impairs insulin-stimulated glucose uptake in human and mouse skeletal muscle by blocking the translocation of GLUT4 to the cell surface. In addition, exercise/HIF-1α downregulates the expression of TXNIP, a well-known negative regulator of insulin action. In conclusion, we are the first to demonstrate that HIF-1α is a key regulator of glucose metabolism in skeletal muscle by directly controlling the transcription of RAB20 and TXNIP These results hint toward a novel function of HIF-1α as a potential pharmacological target to improve skeletal muscle insulin sensitivity.


Assuntos
Glucose/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Insulina/metabolismo , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Oxigênio/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fibras Musculares Esqueléticas/efeitos dos fármacos , Oxigênio/fisiologia , Regulação para Cima , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
11.
Diabetes Obes Metab ; 19(12): 1722-1731, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28497570

RESUMO

AIMS: To conduct a comprehensive pre-clinical study of the novel ultra-long acting insulin analogue LAPS Insulin115. METHODS: Pharmacokinetic/pharmacodynamic studies comparing LAPS Insulin115 with other basal insulins were conducted in genetically diabetic (db/db) mice. Insulin signalling in the major target organs was analysed using Western blot after single subcutaneous injection in wild-type male Wistar rats. Using in vitro assays we analysed transendothelial transport, insulin receptor (IR) interaction, and the mitogenic and metabolic properties of LAPS Insulin115. Furthermore, IR downregulation after long-term exposure to high concentrations of LAPS Insulin115 was analysed using an in vitro desensitization/resensitization model. RESULTS: The novel Fc-conjugated insulin derivative LAPS Insulin115 showed an extensively prolonged pharmacokinetic and pharmacodynamic profile in rodents. Despite its size of 59 kDa, LAPS Insulin115 passes the vascular endothelial barrier and induces insulin signalling in all major target tissues in rats. In vitro, LAPS Insulin115 showed a very slow onset of action because of its reduced IR affinity; however, after long-term stimulation it was equipotent in respect to its metabolic potency and showed no increased mitogenic action when compared with regular insulin. Remarkably, under conditions of chronic exposure, LAPS Insulin115 does not induce irreversible desensitization of target cells, which is probably attributable to much less prominent IR downregulation. CONCLUSION: Thus, LAPS Insulin115 exhibits a unique in vivo and in vitro profile and thereby represents an excellent candidate for a once-weekly insulin analogue.


Assuntos
Drogas em Investigação/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Insulina de Ação Prolongada/farmacologia , Receptor de Insulina/agonistas , Transdução de Sinais/efeitos dos fármacos , Absorção Fisiológica , Animais , Linhagem Celular , Células Cultivadas , Drogas em Investigação/química , Drogas em Investigação/metabolismo , Drogas em Investigação/uso terapêutico , Meia-Vida , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/metabolismo , Hipoglicemiantes/uso terapêutico , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Insulina de Ação Prolongada/genética , Insulina de Ação Prolongada/metabolismo , Insulina de Ação Prolongada/uso terapêutico , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos Mutantes , Especificidade de Órgãos , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ratos Wistar , Receptor de Insulina/antagonistas & inibidores , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Testes de Toxicidade Crônica
12.
Cardiovasc Diabetol ; 15: 96, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27422524

RESUMO

BACKGROUND: The effects of insulin on cardiomyocytes, such as positive inotropic action and glucose uptake are well described. However, in vitro studies comparing long-acting insulin analogues with regard to cardiomyocyte signalling and function have not been systematically conducted. METHODS: Insulin receptor (IR) binding was assessed using membrane embedded and solubilised IR preparations. Insulin signalling was analysed in adult rat ventricular myocytes (ARVM) and HL-1 cardiac cells. Inotropic effects were examined in ARVM and the contribution of Akt to this effect was assessed by specific inhibition with triciribine. Furthermore, beating-rate in Cor.4U(®) human cardiomyocytes, glucose uptake in HL-1 cells, and prevention from H2O2 induced caspase 3/7 activation in cardiac cells overexpressing the human insulin receptor (H9c2-E2) were analysed. One-way ANOVA was performed to determine significance between conditions. RESULTS: Insulin degludec showed significant lower IR affinity in membrane embedded IR preparations. In HL-1 cardiomyocytes, stimulation with insulin degludec resulted in a lower Akt(Ser(473)) and Akt(Thr(308)) phosphorylation compared to insulin, insulin glargine and its active metabolite M1 after 5- and 10-min incubation. After 60-min treatment, phosphorylation of Akt was comparable for all insulin analogues. Stimulation of glucose uptake in HL-1 cells was increased by 40-60 %, with a similar result for all analogues. Incubation of electrically paced ARVM resulted for all insulins in a significantly increased sarcomere shortening, contractility- and relaxation-velocity. This positive inotropic effect of all insulins was Akt dependent. Additionally, in Cor.4U(®) cardiomyocytes a 10-20 % increased beating-rate was detected for all insulins, with slower onset of action in cells treated with insulin degludec. H9c2-E2 cells challenged with H2O2 showed a fivefold increase in caspase 3/7 activation, which could be abrogated by all insulins used. CONCLUSIONS: In conclusion, we compared for the first time the signalling and functional impact of the long-acting insulin analogues insulin glargine and insulin degludec in cardiomyocyte cell models. We demonstrated similar efficacy under steady-state conditions relative to regular insulin in functional endpoint experiments. However, it remains to be shown how these results translate to the in vivo situation.


Assuntos
Glicemia/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Insulina Glargina/farmacologia , Insulina de Ação Prolongada/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Diabetes Mellitus Tipo 1/metabolismo , Hipoglicemia/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Ratos , Receptor de Insulina/metabolismo
13.
Mol Nutr Food Res ; 60(9): 2065-75, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27159788

RESUMO

SCOPE: n-3 and n-6 PUFAs have several opposing biological effects and influence white adipose tissue (WAT) function. The recent discovery of thermogenic UCP1-expressing brite adipocytes within WAT raised the question whether n-3 and n-6 PUFAs exert differential effects on brite adipocyte formation and mitochondrial function. METHODS AND RESULTS: Primary human preadipocytes were treated with n-3 PUFAs (eicosapentaenoic acid, EPA; docosahexaenoic acid, DHA) or n-6 PUFA (arachidonic acid, ARA) during differentiation, and adipogenesis, white and brite gene expression markers, mitochondrial content and function were analyzed at day 12 of differentiation. Adipogenesis was equally increased by n-3 and n-6 PUFAs. The n-6 PUFA ARA increased lipid droplet size and expression of the white-specific marker TCF21 while decreased mitochondrial protein expression and respiratory function. In contrast, EPA increased expression of the brown adipocyte-related genes UCP1 and CPT1B, and improved mitochondrial function of adipocytes. The opposing effects of EPA and ARA on gene expression and mitochondrial function were also observed in cells treated from day 8 to 12 of adipocyte differentiation. CONCLUSION: EPA promotes brite adipogenesis and improves parameters of mitochondrial function, such as increased expression of CPTB1, citrate synthase activity and higher maximal respiratory capacity, while ARA reduced mitochondrial spare respiratory capacity in vitro.


Assuntos
Adipócitos/efeitos dos fármacos , Ácido Araquidônico/farmacologia , Ácido Eicosapentaenoico/farmacologia , Mitocôndrias/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Carnitina O-Palmitoiltransferase/genética , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Citrato (si)-Sintase/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Feminino , Humanos , Mitocôndrias/metabolismo , Proteína Desacopladora 1/genética
14.
Biochem Biophys Res Commun ; 471(3): 348-54, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26872429

RESUMO

DPP4 is a ubiquitously expressed cell surface protease which is also released to the circulation as soluble DPP4 (sDPP4). Recently, we identified DPP4 as a novel adipokine oversecreted in obesity and thus potentially linking obesity to the metabolic syndrome. Furthermore, sDPP4 impairs insulin signaling in an autocrine and paracrine fashion in different cell types. However, it is still unknown which functional role DPP4 might play in adipocytes. Therefore, primary human adipocytes were treated with a specific DPP4 siRNA. Adipocyte differentiation was not affected by DPP4 silencing. Interestingly, DPP4 reduction improved insulin responsiveness of adipocytes at the level of insulin receptor, proteinkinase B (Akt) and Akt substrate of 160 kDa. To investigate whether the observed effects could be attributed to the enzymatic activity of DPP4, human adipocytes were treated with the DPP4 inhibitors sitagliptin and saxagliptin. Our data show that insulin-stimulated activation of Akt is augmented by DPP4 inhibitor treatment. Based on our previous observation that sDPP4 induces insulin resistance in adipocytes, and that adipose DPP4 levels are higher in obese insulin-resistant patients, we now suggest that the abundance of DPP4 might be a regulator of adipocyte insulin signaling.


Assuntos
Adipócitos/citologia , Adipócitos/fisiologia , Dipeptidil Peptidase 4/metabolismo , Resistência à Insulina/fisiologia , Insulina/metabolismo , Transdução de Sinais/fisiologia , Adamantano/administração & dosagem , Adamantano/análogos & derivados , Diferenciação Celular/fisiologia , Células Cultivadas , Dipeptídeos/administração & dosagem , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Ativação Enzimática , Humanos , Hipoglicemiantes/administração & dosagem , Fosfato de Sitagliptina/administração & dosagem
15.
Front Pharmacol ; 7: 497, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28101054

RESUMO

Background: Obesity is associated with impaired vascular function. In the cardiovascular system, protease-activated receptor 2 (PAR2) exerts multiple functions such as the control of the vascular tone. In pathological conditions, PAR2 is related to vascular inflammation. However, little is known about the impact of obesity on PAR2 in the vasculature. Therefore, we explored the role of PAR2 as a potential link between obesity and cardiovascular diseases. Methods: C57BL/6 mice were fed with either a chow or a 60% high fat diet for 24 weeks prior to isolation of aortas. Furthermore, human coronary artery endothelial cells (HCAEC) and human coronary smooth muscle cells (HCSMC) were treated with conditioned medium obtained from in vitro differentiated primary human adipocytes. To investigate receptor interaction vascular endothelial growth factor receptor 2 (VEGFR2) was blocked by exposure to calcium dobesilate and a VEGFR2 neutralization antibody, before treatment with PAR2 activating peptide. Student's t-test or one-way were used to determine statistical significance. Results: Both, high fat diet and exposure to conditioned medium increased PAR2 expression in aortas and human vascular cells, respectively. In HCSMC, conditioned medium elicited proliferation as well as cyclooxygenase 2 induction, which was suppressed by the PAR2 antagonist GB83. Specific activation of PAR2 by the PAR2 activating peptide induced proliferation and cyclooxygenase 2 expression which were abolished by blocking the VEGFR2. Additionally, treatment of HCSMC with the PAR2 activating peptide triggered VEGFR2 phosphorylation. Conclusion: Under obesogenic conditions, where circulating levels of pro-inflammatory adipokines are elevated, PAR2 arises as an important player linking obesity-related adipose tissue inflammation to atherogenesis. We show for the first time that the underlying mechanisms of these pro-atherogenic effects involve a potential transactivation of the VEGFR2 by PAR2.

16.
Arch Physiol Biochem ; 121(5): 194-205, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26599229

RESUMO

Adipose tissue and skeletal muscle are organs that respond strongly to obesity and physical activity exhibiting high secretory activity. To identify novel putative adipomyokines, comparative expression studies of skeletal muscle and adipose tissue of lean (C57BL/6J) and obese (C57BL/6J on a high-fat diet and NZO) mice, of sedentary and endurance trained C57BL/6J mice and of cattle characterized by different amounts of intramuscular fat were combined with human secretome data and scored. In highly regulated transcripts, we identified 119 myokines, 79 adipokines and 22 adipomyokines. Network analysis of these candidates revealed remodelling of extracellular matrix and tissue fibrosis as relevant functions of several of these candidates. Given the pathophysiogical relevance of fibrosis for adipose-muscle-cross-talk in obesity and type 2 diabetes and its physiological role in exercise adaptation and meat quality of farm animals, they represent interesting candidates for further investigations in different research areas and species.


Assuntos
Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Citocinas/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Proteoma , Transcriptoma , Adipocinas/genética , Tecido Adiposo/citologia , Animais , Bovinos , Células Cultivadas , Citocinas/genética , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Redes Reguladoras de Genes , Humanos , Canais Iônicos/fisiologia , Masculino , Síndrome Metabólica/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Mitocondriais/fisiologia , Músculo Esquelético/citologia , Obesidade/etiologia , Condicionamento Físico Animal , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Proteína Desacopladora 1
17.
Prog Mol Biol Transl Sci ; 135: 313-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26477920

RESUMO

Skeletal muscle and white adipose tissue are the largest organs in the human body and both tissues act as endocrine organs capable of secreting many bioactive molecules. There has been some confusion about nomenclature and we suggest that the name myokine should be restricted to a protein or molecule secreted from myocytes, whereas the term adipokine should be used to describe proteins and molecules secreted from adipocytes. In fact, many myokines are also produced by adipocytes and we propose to name them adipo-myokines. Many adipo-myokines produced by skeletal muscle or adipose tissue are influenced by exercise. Therefore, it is likely that adipo-myokines may contribute in the mediation of the health benefits of exercise and physical inactivity probably leads to an altered adipo-myokine profile, which could provide a potential mechanism for the association between sedentary behavior and many chronic diseases. Within this review, we evaluate the effects of acute and chronic exercise on myokine, adipokine, and adipo-myokine production. By using the adipo-myokine concept and including both skeletal muscle and adipose tissue, an attempt is made to gain a global view on the beneficial effects of different exercise programs and the underlying pathways.


Assuntos
Adipocinas/biossíntese , Citocinas/biossíntese , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Animais , Humanos , Modelos Biológicos
18.
Curr Obes Rep ; 4(4): 411-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26349436

RESUMO

The crosstalk between adipose tissue and skeletal muscle has gained considerable interest, since this process, specifically in obesity, substantially drives the pathogenesis of muscle insulin resistance. In this review, we discuss novel concepts and targets of this bidirectional organ communication system. This includes adipo-myokines like apelin and FGF21, inflammasomes, autophagy, and microRNAs (miRNAs). Literature analysis shows that the crosstalk between fat and muscle involves both extracellular molecules and intracellular organelles. We conclude that integration of these multiple crosstalk elements into one network will be required to better understand this process.


Assuntos
Tecido Adiposo/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Receptor Cross-Talk/fisiologia , Apelina , Exercício Físico , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , MicroRNAs/metabolismo
19.
Arch Physiol Biochem ; 121(3): 81-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26135380

RESUMO

Adipose tissue is not only releasing lipids but also various adipokines that are both dysregulated in the obese state and may contribute to obesity-associated vascular dysfunction and cardiovascular risk. We have previously shown that the combination of adipocyte-conditioned medium (CM) and oleic acid (OA) increases proliferation of human vascular smooth muscle cells (VSMC) in a synergistic way. We identified vascular endothelial growth factor (VEGF) as a component within CM that is responsible for most of the observed effects. In this study, we investigate novel mechanisms that underlie the combined effects of adipokine and oleic acid-induced proliferation of VSMC. Oleic acid leads to significant lipid accumulation in VSMC that is further enhanced by the combined treatment with CM. Accordingly CM stimulates CD36 expression in VSMC while OA is not affecting CD36. Silencing of CD36 was established and prevents lipid accumulation in all tested conditions. CD36 silencing also abrogates CM- and OA-induced proliferation and considerably reduces proliferation induced by the combination of CM and OA. At the same time, VEGF secretion and VEGF-receptor 1 (VEGF-R1) by VSMC was not affected by CD36 silencing. However, VEGF was not able to induce any proliferation in VSMC after CD36 silencing that also blunted VEGF-induced extracellular signal-regulated kinase (ERK) activation. Finally, combined silencing of CD36 together with a blocking antibody against VEGF prevented most of CMOA-induced proliferation. In conclusion, our results demonstrate that CD36 is mediating CM-induced proliferation of VSMC. Induction of CD36 by adipokines enhances the response of VSMC towards VEGF and OA.


Assuntos
Adipocinas/farmacologia , Antígenos CD36/genética , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Miócitos de Músculo Liso/efeitos dos fármacos , Ácido Oleico/farmacologia , Adipócitos/citologia , Adipócitos/metabolismo , Adipocinas/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Adulto , Anticorpos Neutralizantes/farmacologia , Antígenos CD36/antagonistas & inibidores , Antígenos CD36/metabolismo , Vasos Coronários/citologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Meios de Cultivo Condicionados/química , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
Nutrients ; 7(2): 865-86, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25629558

RESUMO

Nutritional factors such as casein hydrolysates and long chain polyunsaturated fatty acids have been proposed to exert beneficial metabolic effects. We aimed to investigate how a casein hydrolysate (eCH) and long chain polyunsaturated fatty acids could affect human primary adipocyte function in vitro. Incubation conditions with the different nutritional factors were validated by assessing cell vitality with lactate dehydrogenase (LDH) release and neutral red incorporation. Intracellular triglyceride content was assessed with Oil Red O staining. The effect of eCH, a non-peptidic amino acid mixture (AA), and long-chain polyunsaturated fatty acids (LC-PUFAs) on adiponectin and leptin secretion was determined by enzyme-linked immunosorbent assay (ELISA). Intracellular adiponectin expression and nuclear factor-κB (NF-κB) activation were analyzed by Western blot, while monocyte chemoattractant protein-1 (MCP-1) release was explored by ELISA. The eCH concentration dependently increased adiponectin secretion in human primary adipocytes through its intrinsic peptide bioactivity, since the non-peptidic mixture, AA, could not mimic eCH's effects on adiponectin secretion. Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and DHA combined with arachidonic acid (ARA) upregulated adiponectin secretion. However, only DHA and DHA/ARA exerted a potentanti-inflammatory effect reflected by prevention of tumor necrosis factor-α (TNF-α) induced NF-κB activation and MCP-1 secretion in human adipocytes. eCH and DHA alone or in combination with ARA, may hold the key for nutritional programming through their anti-inflammatory action to prevent diseases with low-grade chronic inflammation such as obesity or diabetes.


Assuntos
Adipócitos/metabolismo , Adipocinas/metabolismo , Caseínas/metabolismo , Ácidos Graxos Insaturados/metabolismo , Inflamação/metabolismo , Proteínas do Leite/metabolismo , Adipócitos/efeitos dos fármacos , Técnicas de Cultura de Células , Quimiocina CCL2/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Leptina/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...