Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Semin Nephrol ; 42(3): 151284, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-36435684

RESUMO

Kidney health and manifestation of disease in transgender men, women, and nonbinary individuals are not well understood. Transgender individuals commonly receive gender-affirming hormone therapy (GAHT) to align their outward appearance with their gender. Recent attention to the differences in fundamental kidney parameters has identified that transgender individuals may manifest levels of these biomarkers differently than their cisgender counterparts. Improving understanding of the differences in biomarkers and in the development of kidney disease is essential to providing appropriate kidney care to this vulnerable population. In this review, we introduce the current information related to GAHT and kidney health and highlight the significant gaps in our understanding of how GAHT may affect kidney physiology and pathophysiology.


Assuntos
Nefropatias , Pessoas Transgênero , Transexualidade , Masculino , Humanos , Feminino , Nefropatias/induzido quimicamente , Hormônios
2.
4.
Physiol Rep ; 9(22): e15094, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34806312

RESUMO

Acute kidney injury (AKI) is a major cause of patient mortality and a major risk multiplier for the progression to chronic kidney disease (CKD). The mechanism of the AKI to CKD transition is complex but is likely mediated by the extent and length of the inflammatory response following the initial injury. Lymphatic vessels help to maintain tissue homeostasis through fluid, macromolecule, and immune modulation. Increased lymphatic growth, or lymphangiogenesis, often occurs during inflammation and plays a role in acute and chronic disease processes. What roles renal lymphatics and lymphangiogenesis play in AKI recovery and CKD progression remains largely unknown. To determine if the increased lymphatic density is protective in the response to kidney injury, we utilized a transgenic mouse model with inducible, kidney-specific overexpression of the lymphangiogenic protein vascular endothelial growth factor-D to expand renal lymphatics. "KidVD" mouse kidneys were injured using inducible podocyte apoptosis and proteinuria (POD-ATTAC) or bilateral ischemia reperfusion. In the acute injury phase of both models, KidVD mice demonstrated a similar loss of function measured by serum creatinine and glomerular filtration rate compared to their littermates. While the initial inflammatory response was similar, KidVD mice demonstrated a shift toward more CD4+ and fewer CD8+ T cells in the kidney. Reduced collagen deposition and improved functional recovery over time was also identified in KidVD mice. In KidVD-POD-ATTAC mice, an increased number of podocytes were counted at 28 days post-injury. These data demonstrate that increased lymphatic density prior to injury alters the injury recovery response and affords protection from CKD progression.


Assuntos
Injúria Renal Aguda/metabolismo , Rim/metabolismo , Vasos Linfáticos/metabolismo , Recuperação de Função Fisiológica , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/imunologia , Animais , Apoptose , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Colágeno/metabolismo , Modelos Animais de Doenças , Rim/imunologia , Linfangiogênese/genética , Camundongos , Camundongos Transgênicos , Podócitos , Proteinúria/imunologia , Proteinúria/metabolismo , Traumatismo por Reperfusão/imunologia , Tacrolimo/análogos & derivados , Tacrolimo/toxicidade , Fator D de Crescimento do Endotélio Vascular/genética
5.
JCI Insight ; 4(2)2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30674729

RESUMO

Acute kidney injury (AKI) is a devastating clinical condition affecting at least two-thirds of critically ill patients, and, among these patients, it is associated with a greater than 60% risk of mortality. Kidney mononuclear phagocytes (MPs) are implicated in pathogenesis and healing in mouse models of AKI and, thus, have been the subject of investigation as potential targets for clinical intervention. We have determined that, after injury, F4/80hi-expressing kidney-resident macrophages (KRMs) are a distinct cellular subpopulation that does not differentiate from nonresident infiltrating MPs. However, if KRMs are depleted using polyinosinic/polycytidylic acid (poly I:C), they can be reconstituted from bone marrow-derived precursors. Further, KRMs lack major histocompatibility complex class II (MHCII) expression before P7 but upregulate it over the next 14 days. This MHCII- KRM phenotype reappears after injury. RNA sequencing shows that injury causes transcriptional reprogramming of KRMs such that they more closely resemble that found at P7. KRMs after injury are also enriched in Wingless-type MMTV integration site family (Wnt) signaling, indicating that a pathway vital for mouse and human kidney development is active. These data indicate that mechanisms involved in kidney development may be functioning after injury in KRMs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...