Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(4): 1583-1599, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36727438

RESUMO

Inefficient endosomal escape remains the primary barrier to the broad application of oligonucleotide therapeutics. Liver uptake after systemic administration is sufficiently robust that a therapeutic effect can be achieved but targeting extrahepatic tissues remains challenging. Prior attempts to improve oligonucleotide activity using small molecules that increase the leakiness of endosomes have failed due to unacceptable toxicity. Here, we show that the well-tolerated and orally bioavailable synthetic sphingolipid analog, SH-BC-893, increases the activity of antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs) up to 200-fold in vitro without permeabilizing endosomes. SH-BC-893 treatment trapped endocytosed oligonucleotides within extra-lysosomal compartments thought to be more permeable due to frequent membrane fission and fusion events. Simultaneous disruption of ARF6-dependent endocytic recycling and PIKfyve-dependent lysosomal fusion was necessary and sufficient for SH-BC-893 to increase non-lysosomal oligonucleotide levels and enhance their activity. In mice, oral administration of SH-BC-893 increased ASO potency in the liver by 15-fold without toxicity. More importantly, SH-BC-893 enabled target RNA knockdown in the CNS and lungs of mice treated subcutaneously with cholesterol-functionalized duplexed oligonucleotides or unmodified ASOs, respectively. Together, these results establish the feasibility of using a small molecule that disrupts endolysosomal trafficking to improve the activity of oligonucleotides in extrahepatic tissues.


Assuntos
Endossomos , Oligonucleotídeos , Animais , Camundongos , Oligonucleotídeos/metabolismo , Endossomos/genética , Endocitose/fisiologia , Transporte Biológico , Oligonucleotídeos Antissenso/genética , RNA Interferente Pequeno/genética
2.
EMBO Mol Med ; 13(8): e13086, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34231322

RESUMO

Ceramide-induced mitochondrial fission drives high-fat diet (HFD)-induced obesity. However, molecules targeting mitochondrial dynamics have shown limited benefits in murine obesity models. Here, we reveal that these compounds are either unable to block ceramide-induced mitochondrial fission or require extended incubation periods to be effective. In contrast, targeting endolysosomal trafficking events important for mitochondrial fission rapidly and robustly prevented ceramide-induced disruptions in mitochondrial form and function. By simultaneously inhibiting ARF6- and PIKfyve-dependent trafficking events, the synthetic sphingolipid SH-BC-893 blocked palmitate- and ceramide-induced mitochondrial fission, preserved mitochondrial function, and prevented ER stress in vitro. Similar benefits were observed in the tissues of HFD-fed mice. Within 4 h of oral administration, SH-BC-893 normalized mitochondrial morphology in the livers and brains of HFD-fed mice, improved mitochondrial function in white adipose tissue, and corrected aberrant plasma leptin and adiponectin levels. As an interventional agent, SH-BC-893 restored normal body weight, glucose disposal, and hepatic lipid levels in mice consuming a HFD. In sum, the sphingolipid analog SH-BC-893 robustly and acutely blocks ceramide-induced mitochondrial dysfunction, correcting diet-induced obesity and its metabolic sequelae.


Assuntos
Resistência à Insulina , Dinâmica Mitocondrial , Obesidade , Esfingolipídeos/farmacologia , Animais , Ceramidas , Dieta Hiperlipídica/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...