Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(14): 3508-3520, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38560894

RESUMO

The structural aspects of ambient-temperature densification via pressurization at 25 GPa were studied by solid-state NMR for two case studies: An alkaline earth boroaluminosilicate glass with the composition 6CaO-3SrO-1BaO-10Al2O3-10B2O3-70SiO2 (labeled SAB) and a sodium magnesium borosilicate glass with the composition 10Na2O-10MgO-20B2O3-60SiO2 (labeled MNBS). For SAB glass, cold pressurization results in significant increases in the average coordination numbers of both boron and aluminum, in line with previous results found in hot-compressed alkali aluminoborosilicate glasses. In addition, 27Al/11B dipolar recoupling experiments reveal a significant decrease in the 11B/27Al dipolar interaction strength upon pressurization, suggesting that the higher-coordinated boron and aluminum species experience weaker magnetic interactions. While this is an expected consequence of the longer internuclear distances involving higher coordination states, the magnitude of the effect also is consistent with a decrease of average B-O-Al internuclear connectivity. By conjecture, a decreased B-O-Al connectivity may present a mechanism of plastic flow inhibiting crack initiation in aluminoborosilicate glasses. In the case of the MNBS glass, no change in the average boron coordination number was observed within experimental error; however, densification increases the extent of B-O-Si connectivity at the expense of small ring structures with dominant B-O-B connectivity. With regard to boron coordination, the data obtained for both case studies differ from those previously found in a series of alkali borosilicate glasses, which had shown an unexpected decrease in N4 upon increased pressure. The results of the present study highlight the importance of changes of medium-range order regarding densification.

2.
Dalton Trans ; 53(15): 6720-6730, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38530644

RESUMO

The ternary polyphosphide La7Zn2P11 was synthesized from the elements by using a salt flux or via a ceramic method in sealed quartz ampoules. The obtained samples were investigated by X-ray powder and single crystal diffraction: own type, P1̄, a = 775.33(13), b = 827.45(13), c = 1502.8(3) pm, α = 82.111(3), ß = 77.034(3), γ = 89.996(3)°, wR2 = 0.1553, 5852 F2 values and 183 variables. This peculiar structure is characterized by the simultaneous presence of three distinct anionic phosphide species, namely P3-, P24-, and P35- units. La7Zn2P11 is an electron precise Zintl phase: (7La3+)21+(2Zn2+)4+(4P3-)12-(2P24-)8-(P35-). The P-P single bond distances range from 219.2 to 223.0 pm. The zinc sites show tetrahedral phosphorus coordination by three P3- and one P24- species. The tetrahedra are condensed to chains via common corners. The P35- units with P-P-P angles of 113.7° have exclusively lanthanum coordination. 31P solid-state NMR was used to probe the phosphorus local environments, connectivities and spatial proximities. The eleven crystallographically distinct phosphorus atoms were assigned with the help of two-dimensional homonuclear dipolar correlation experiments. Even though the application of 2D measurements on such phosphorus-based polyanionic compounds is exceedingly challenging because of the wide dispersion of chemical shifts, the fast irreversible decay of the transverse magnetization, and slow spin-lattice relaxation, a complete assignment is possible using radiofrequency-driven dipolar recoupling (RFDR), J-RESOLVED and total-through-bond correlation with R-sequence (R-TOBSY) techniques.

3.
Chemistry ; 30(11): e202303701, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38078510

RESUMO

Pyramidane molecules have attracted chemists for many decades due to their regular shape, high symmetry and their correspondence in the macroscopic world. Recently, experimental access to a number of examples has been reported, in particular the rarely reported square pyramidal bora[4]pyramidanes. To describe the bonding situation of the nonclassical structure of pyramidanes, we present solid-state Nuclear Magnetic Resonance (NMR) as a versatile tool for deciphering such bonding properties for three now accessible bora[4]pyramidane and dibora[5]pyramidane molecules. 11 B solid-state NMR spectra indicate that the apical boron nuclei in these compounds are strongly shielded (around -50 ppm vs. BF3 -Et2 O complex) and possess quadrupolar coupling constants of less than 0.9 MHz pointing to a rather high local symmetry. 13 C-11 B spin-spin coupling constants have been explored as a measure of the bond covalency in the borapyramidanes. While the carbon-boron bond to the -B(C6 F5 )2 substituents of the base serves as an example for a classical covalent 2-center-2-electron (2c-2e) sp2 -carbon-sp2 -boron σ-bond with 1 J(13 C-11 B) coupling constants in the order of 75 Hz, those of the boron(apical)-carbon(basal) bonds in the pyramid are too small to measure. These results suggest that these bonds have a strongly ionic character, which is also supported by quantum-chemical calculations.

4.
Chem Mater ; 35(17): 7229-7238, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37719033

RESUMO

The unique tunable properties of glasses make them versatile materials for developing numerous state-of-the-art optical technologies. To design new optical glasses with tailored properties, an extensive understanding of the intricate correlation between their chemical composition and physical properties is mandatory. By harnessing this knowledge, the full potential of vitreous matrices can be unlocked, driving advancements in the field of optical sensors. We herein demonstrate the feasibility of using fluoride phosphate glasses co-doped with trivalent praseodymium (Pr3+) and ytterbium (Yb3+) ions for temperature sensing over a broad range of temperatures. These glasses possess high chemical and thermal stability, working as luminescent primary thermometers that rely on the thermally coupled levels of Pr3+ that eliminate the need for recurring calibration procedures. The prepared glasses exhibit a relative thermal sensitivity and uncertainty at a temperature of 1.0% K-1 and 0.5 K, respectively, making them highly competitive with the existing luminescent thermometers. Our findings highlight that Pr3+-containing materials are promising for developing cost-effective and accurate temperature probes, taking advantage of the unique versatility of these vitreous matrices to design the next generation of photonic technologies.

5.
J Phys Chem Lett ; 14(19): 4471-4481, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37154700

RESUMO

Alkali-borosilicate glasses with composition (80-x)SiO2-xB2O3-20Na2O (10 ≤ x ≤ 30) were subjected to a 25 GPa compression and decompression at room temperature, resulting in density increases between 1.4% and 1.9%. The structural changes associated with this process have been investigated and compared with uncompressed glasses having the same thermal history. Systematic trends are identified, using Raman scattering and multinuclear solid-state Nuclear Magnetic Resonance (ssNMR). Perhaps counterintuitively, pressurization tends to increase the concentration of three-coordinated boron species (B(III) units) at the expense of four-coordinated boron (B(IV) units). 23Na NMR spectra show a systematic shift toward higher frequencies in the pressurized glasses, consistent with shorter average Na-O distances. The results are consistently explained in terms of a breakage of Si-O-B4 linkages resulting in the formation of nonbridging oxygen species. Pressure effects on the spectra are reversed by annealing the glasses at their respective glass transition temperatures.

6.
J Phys Condens Matter ; 35(27)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37051714

RESUMO

The structure of glasses in the sodium (Na) super-ionic conductor (NASICON) system Na1+xTi2SixP3-xO12withx= 0.8 andx= 1.0 was explored by combining neutron and high-energy x-ray diffraction with29Si,31P and23Na solid-state nuclear magnetic resonance (NMR) spectroscopy. The29Si magic angle spinning (MAS) NMR spectra reveal that the silica component remains fully polymerized in the form of Si4units, i.e. the silicon atoms are bound to four bridging oxygen atoms. The31P{23Na} rotational echo adiabatic passage double resonance (REAPDOR) NMR data suggest that the31P MAS NMR line shape originates from four-coordinated Pnunits, wheren= 1, 2 or 3 is the number of bridging oxygen atoms per phosphorus atom. These sites differ in their31P-23Na dipolar coupling strengths. The results support an intermediate range order scenario of a phosphosilicate mixed network-former glass in which the phosphate groups selectively attract the Na+modifier ions. Titanium takes a sub-octahedral coordination environment with a mean Ti-O coordination number of 5.17(4) forx= 0.8 and 4.86(4) forx= 1.0. A mismatch between the P-O and Si-O bond lengths of 8% is likely to inhibit the incorporation of silicon into the phosphorus sites of the NASICON crystal structure.

7.
Dalton Trans ; 52(8): 2227-2242, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36519202

RESUMO

While phosphotellurite glasses have superior properties over SiO2-based glasses for many applications in optoelectronics and photonic devices, their high hydroxyl content limits their use in the mid-infrared range. This drawback can be overcome by fluoride addition to the formulation. In this work, we report the preparation, optical, and structural characterization of new glasses in the ternary system TeO2-xNaF-NaPO3 having the compositions 0.8TeO2-0.2[xNaF-(1 - x)NaPO3] and 0.6TeO2-0.4[xNaF-(1 - x)NaPO3] (0 ≤ x ≤ 1) obtained by the traditional melt-quenching method and labeled as T8NNx and T6NNx, respectively. Differential scanning calorimetry (DSC) reveals high thermal stability against crystallization, with Tx-Tg varying from 80 to 130 °C, depending on fluoride/phosphate ratios. Raman spectroscopy suggests that the network connectivity increases with increasing phosphate concentration. 125Te, 23Na, 31P, and 19F NMR spectroscopy provides detailed structural information about Te-O-P, Te-F, Te-O-Te, P-O-P, and P-F linkages and the charge compensation mechanism for the sodium ions. The present study is the first comprehensive structural characterization of a fluorophosphotellurite glass system.

8.
J Chem Phys ; 157(21): 214503, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36511554

RESUMO

Neutron diffraction with magnesium isotope substitution, high energy x-ray diffraction, and 29Si, 27Al, and 25Mg solid-state nuclear magnetic resonance (NMR) spectroscopy were used to measure the structure of glassy diopside (CaMgSi2O6), enstatite (MgSiO3), and four (MgO)x(Al2O3)y(SiO2)1-x-y glasses, with x = 0.375 or 0.25 along the 50 mol. % silica tie-line (1 - x - y = 0.5) or with x = 0.3 or 0.2 along the 60 mol. % silica tie-line (1 - x - y = 0.6). The bound coherent neutron scattering length of the isotope 25Mg was remeasured, and the value of 3.720(12) fm was obtained from a Rietveld refinement of the powder diffraction patterns measured for crystalline 25MgO. The diffraction results for the glasses show a broad asymmetric distribution of Mg-O nearest-neighbors with a coordination number of 4.40(4) and 4.46(4) for the diopside and enstatite glasses, respectively. As magnesia is replaced by alumina along a tie-line with 50 or 60 mol. % silica, the Mg-O coordination number increases with the weighted bond distance as less Mg2+ ions adopt a network-modifying role and more of these ions adopt a predominantly charge-compensating role. 25Mg magic angle spinning (MAS) NMR results could not resolve the different coordination environments of Mg2+ under the employed field strength (14.1 T) and spinning rate (20 kHz). The results emphasize the power of neutron diffraction with isotope substitution to provide unambiguous site-specific information on the coordination environment of magnesium in disordered materials.

9.
Angew Chem Int Ed Engl ; 61(42): e202209391, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36005897

RESUMO

While the range of accessible borylenes has significantly broadened over the last decade, applications remain limited. Herein, we present tricoordinate oxy-borylenes as potent photoreductants that can be readily activated by visible light. Facile oxidation of CAAC stabilized oxy-borylenes (CAAC)(IPr2 Me2 )BOR (R=TMS, CH2 CH2 C6 H5 , CH2 CH2 (4-F)C6 H4 ) to their corresponding radical cations is achieved with mildly oxidizing ferrocenium ion. Cyclovoltammetric studies reveal ground-state redox potentials of up to -1.90 V vs. Fc+/0 for such oxy-borylenes placing them among the strongest organic super electron donors. Their ability as photoreductants is further supported by theoretical studies and showcased by the application as stoichiometric reagents for the photochemical hydrodehalogenation of aryl chlorides, aryl bromides and unactivated alkyl bromides as well as the detosylation of anilines.

10.
Nat Commun ; 12(1): 5293, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489448

RESUMO

The ATP hydrolysis transition state of motor proteins is a weakly populated protein state that can be stabilized and investigated by replacing ATP with chemical mimics. We present atomic-level structural and dynamic insights on a state created by ADP aluminum fluoride binding to the bacterial DnaB helicase from Helicobacter pylori. We determined the positioning of the metal ion cofactor within the active site using electron paramagnetic resonance, and identified the protein protons coordinating to the phosphate groups of ADP and DNA using proton-detected 31P,1H solid-state nuclear magnetic resonance spectroscopy at fast magic-angle spinning > 100 kHz, as well as temperature-dependent proton chemical-shift values to prove their engagements in hydrogen bonds. 19F and 27Al MAS NMR spectra reveal a highly mobile, fast-rotating aluminum fluoride unit pointing to the capture of a late ATP hydrolysis transition state in which the phosphoryl unit is already detached from the arginine and lysine fingers.


Assuntos
Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , DNA Bacteriano/química , DnaB Helicases/química , Helicobacter pylori/enzimologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Compostos de Alumínio/química , Compostos de Alumínio/metabolismo , Arginina/química , Arginina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DnaB Helicases/genética , DnaB Helicases/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Fluoretos/química , Fluoretos/metabolismo , Expressão Gênica , Helicobacter pylori/genética , Hidrólise , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Termodinâmica
11.
J Chem Phys ; 155(7): 074501, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418933

RESUMO

The structure of crystalline and amorphous materials in the sodium (Na) super-ionic conductor system Na1+xAlxGe2-x(PO4)3 with x = 0, 0.4, and 0.8 was investigated by combining (i) neutron and x-ray powder diffraction and pair-distribution function analysis with (ii) 27Al and 31P magic angle spinning (MAS) and 31P/23Na double-resonance nuclear magnetic resonance (NMR) spectroscopy. A Rietveld analysis of the powder diffraction patterns shows that the x = 0 and x = 0.4 compositions crystallize into space group-type R3̄, whereas the x = 0.8 composition crystallizes into space group-type R3̄c. For the as-prepared glass, the pair-distribution functions and 27Al MAS NMR spectra show the formation of sub-octahedral Ge and Al centered units, which leads to the creation of non-bridging oxygen (NBO) atoms. The influence of these atoms on the ion mobility is discussed. When the as-prepared glass is relaxed by thermal annealing, there is an increase in the Ge and Al coordination numbers that leads to a decrease in the fraction of NBO atoms. A model is proposed for the x = 0 glass in which super-structural units containing octahedral Ge(6) and tetrahedral P(3) motifs are embedded in a matrix of tetrahedral Ge(4) units, where superscripts denote the number of bridging oxygen atoms. The super-structural units can grow in size by a reaction in which NBO atoms on the P(3) motifs are used to convert Ge(4) to Ge(6) units. The resultant P(4) motifs thereby provide the nucleation sites for crystal growth via a homogeneous nucleation mechanism.

12.
Angew Chem Int Ed Engl ; 60(42): 22879-22884, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34363618

RESUMO

The synthesis and characterization of the bis(η6 -benzene)lithium cation, the benzene metallocene of the lightest metal, is reported. The boron compound FmesBCl2 [Fmes: 2,4,6-tris(trifluoromethyl)phenyl] reacted with three molar equivalents of the lithio-acetylene reagent Li-C≡C-Fmxyl [Fmxyl: 3,5-bis(trifluoromethyl)phenyl]. Subsequent crystallization from benzene gave the [bis(η6 -benzene)Li]+ cation with the [{FmesB(-C≡C-Fmxyl)3 }2 Li]- anion. This parent [(arene)2 Li]+ cation shows an eclipsed arrangement of the pair of benzene ligands at the central lithium cation with uniform carbon-lithium bond lengths. The corresponding [(η6 -toluene)2 Li]+ and [(η6 -durene)2 Li]+ containing salts were similarly prepared. The bis(arene)lithium cations were characterized by X-ray diffraction, by solid-state 7 Li MAS NMR spectroscopy and their bonding features were analyzed by DFT calculations.

13.
Chemistry ; 27(52): 13249-13257, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34270155

RESUMO

The first comprehensive solid-state nuclear magnetic resonance (NMR) characterization of geminal alane-phosphane frustrated Lewis pairs (Al/P FLPs) is reported. Their relevant NMR parameters (isotropic chemical shifts, direct and indirect 27 Al-31 P spin-spin coupling constants, and 27 Al nuclear electric quadrupole coupling tensor components) have been determined by numerical analysis of the experimental NMR line shapes and compared with values computed from the known crystal structures by using density functional theory (DFT) methods. Our work demonstrates that the 31 P NMR chemical shifts for the studied Al/P FLPs are very sensitive to slight structural inequivalences. The 27 Al NMR central transition signals are spread out over a broad frequency range (>200 kHz), owing to the presence of strong nuclear electric quadrupolar interactions that can be well-reproduced by the static 27 Al wideband uniform rate smooth truncation (WURST) Carr-Purcell-Meiboom-Gill (WCPMG) NMR experiment. 27 Al chemical shifts and quadrupole tensor components offer a facile and clear distinction between three- and four-coordinate aluminum environments. For measuring internuclear Al⋅⋅⋅P distances a new resonance-echo saturation-pulse double-resonance (RESPDOR) experiment was developed by using efficient saturation via frequency-swept WURST pulses. The successful implementation of this widely applicable technique indicates that internuclear Al⋅⋅⋅P distances in these compounds can be measured within a precision of ±0.1 Å.

14.
ACS Appl Mater Interfaces ; 13(27): 31495-31513, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34219455

RESUMO

Owing to their fast but tunable degradation kinetics (in comparison to silicates) and excellent bioactivity, the past decade has witnessed an upsurge in the research interest of borate/borosilicate-based bioactive glasses for their potential use in a wide range of soft tissue regeneration applications. Nevertheless, most of these glasses have been developed using trial-and-error approaches wherein SiO2 has been gradually replaced by B2O3. One major reason for using this empirical approach is the complexity of short-to-intermediate range structures of these glasses which greatly complicate the development of a thorough understanding of composition-structure-solubility relationships in these systems. Transitioning beyond the current style of composition design to a style that facilitates the development of bioactive glasses with controlled ion release tailored for specific patients/diseases requires a deeper understanding of the compositional/structural dependence of glass degradation behavior in vitro and in vivo. Accordingly, the present study aims to decipher the structural drivers controlling the dissolution kinetics and ion-release behavior of potentially bioactive glasses designed in the Na2O-B2O3-P2O5-SiO2 system across a broad compositional space in simulated body environments (pH = 7.4). By employing state-of-the-art spectroscopy-based characterization techniques, it has been shown that the degradation kinetics of borosilicate glasses depend on their R (Na2O/B2O3) and K (SiO2/B2O3) ratios, while the release of particular network-forming moieties from the glass into solution is strongly influenced by their role in-and effect on-the short-to-intermediate-range molecular structure. The current study aims to promote a rational design of borosilicate-based bioactive glasses, where a delicate balance between maximizing soft tissue regeneration and minimizing calcification and cytotoxicity can be achieved by tuning the release of ionic dissolution products (of controlled identity and abundance) from bioactive glasses into physiological media.


Assuntos
Boro/química , Portadores de Fármacos/química , Vidro/química , Silicatos/química , Desenho de Fármacos , Fenômenos Mecânicos , Dióxido de Silício/química , Solubilidade
15.
Phys Chem Chem Phys ; 23(4): 2999-3007, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480922

RESUMO

The synthesis, photophysical characterization, and quantum chemical calculations of a series of benzotriazinyl radicals and their styryl radical trapping products are presented. The benzotriazinyl radicals are non-luminescent but surprisingly the corresponding styryl radical trapping products exhibit high fluorescence quantum yields (up to 60% in some cases), making them highly valuable probes or labels. Additionally, the influence of the substitution pattern on the optical properties of the radical trapping products was observed experimentally and interpreted by means of quantum chemical calculations. Specific substitution patterns showed a bathochromic shift compared to the unsubstituted compound. Computationally, it was shown that this substitution pattern leads to a stronger energetic stabilization of the lowest unoccupied molecular orbital than the highest occupied molecular orbital. Analysis of the influence of the substitution pattern on the optical properties showed a bathochromic shift in several examples, which was interpreted by means of quantum chemical calculations.

16.
Molecules ; 25(6)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204399

RESUMO

Modern solid-state NMR techniques offer a wide range of opportunities for the structural characterization of frustrated Lewis pairs (FLPs), their aggregates, and the products of cooperative addition reactions at their two Lewis centers. This information is extremely valuable for materials that elude structural characterization by X-ray diffraction because of their nanocrystalline or amorphous character, (pseudo-)polymorphism, or other types of disordering phenomena inherent in the solid state. Aside from simple chemical shift measurements using single-pulse or cross-polarization/magic-angle spinning NMR detection techniques, the availability of advanced multidimensional and double-resonance NMR methods greatly deepened the informational content of these experiments. In particular, methods quantifying the magnetic dipole-dipole interaction strengths and indirect spin-spin interactions prove useful for the measurement of intermolecular association, connectivity, assessment of FLP-ligand distributions, and the stereochemistry of adducts. The present review illustrates several important solid-state NMR methods with some insightful applications to open questions in FLP chemistry, with a particular focus on supramolecular associates.


Assuntos
Boranos/química , Fosfinas/química , Reação de Cicloadição , Bases de Lewis/química , Ressonância Magnética Nuclear Biomolecular
17.
J Mater Chem B ; 8(7): 1456-1465, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31994588

RESUMO

B2O3 doped (0.5-15 mol%) ordered mesoporous bioactive glasses (MBG) with the composition 80% SiO2-15% CaO-5% P2O5 were synthesized via a sol-gel based evaporation-induced self-assembly process using the block-copolymer P123 as a structure directing agent and characterized by biokinetic, mechanical and structural investigations. Nitrogen physisorption isotherms and electron microscopy indicate no detrimental effect of B2O3 on the ordered hexagonal pore structure. Boron incorporation increases both the bulk modulus and hardness of the glasses. In vitro bioactivity tests reveal a rapid initial release of Ca2+ and PO43- ions, followed by formation of hydroxyapatite carbonate within a few hours. Contrary to the tight incorporation of Al in Al-doped MBGs, the rapid release of borate species into simulated-body-fluid suggests loosely bound species localized at the internal surfaces of the mesopores. 29Si, 11B, 31P, and 1H solid state NMR spectroscopy reveal that the majority of the borate is present as anionic BO4/2- species. The need for charge compensation leads to an increase in the average degree of polymerization of the phosphate species for high boron contents. 11B{31P} rotational echo double resonance NMR results reveal the absence of B-O-P linkages. This structural model explains the rapid release of borate and the enhanced dissolution kinetics of the Ca2+ and phosphate species.


Assuntos
Materiais Biocompatíveis/química , Boro/química , Óculos , Tamanho da Partícula , Porosidade , Propriedades de Superfície
18.
Chemistry ; 26(6): 1269-1273, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31737944

RESUMO

The active six-membered cyclo-FLP 6 undergoes a rapid P/B addition reaction to carbon dioxide. At elevated temperature, the resulting heterobicyclo[2.2.2]octane derived product 7 undergoes ring opening and equilibrates with the cyclotetramer (7)4 . In the large macrocyclic structure, four monomeric six-membered cyclo-FLP units are connected by four CO2 molecules to form the supramolecular ring system. The P/B cyclo-FLP 6 undergoes a variety of additional cycloaddition reactions.

19.
Inorg Chem ; 58(10): 7010-7025, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31062962

RESUMO

A total of 35 intermetallic aluminum compounds have been synthesized from the elements via arc melting and characterized by powder X-ray diffraction. A total of 15 of them have been previously reported; however, detailed property investigations were missing. Compounds of the RETMAl2 (rare earth metal RE = Sc, Y, La-Nd, Sm, Gd-Tm, Lu) series with transition metal TM = Ni, Pd, and Pt crystallize isostructurally in the orthorhombic MgCuAl2 type structure ( Cmcm, oC16, fc2). Single-crystal X-ray diffraction investigations were conducted on YNiAl2, LaNiAl2, YPdAl2, ScPtAl2, and YPtAl2. The TM and Al atoms form a [TMAl2]δ- polyanion, the RE atoms reside in cavities within the framework. While the Sc, Y, La, and Lu compounds exhibit Pauli-paramagnetic behavior, consistent with all atoms being closed shell, the other RETMAl2 compounds show paramagnetism along with magnetic ordering at low temperatures, in line with an open-shell trivalent oxidation state for the RE atoms. Solid-state 27Al NMR investigations were carried out on the Pauli-paramagnetic samples, all showing only a single central transition, in line with one crystallographic site for the respective atoms. The observed quadrupolar coupling constants and electric-field-gradient asymmetry parameters were found to be in good agreement with the density-functional-theory-calculated values. Isotropic resonance shifts are dominated by the Fermi-contact interactions with s-conduction electron densities at the Fermi edge (Knight shifts). The bonding characteristics mirror the electronic density of states and crystal chemistry of the family of intermetallic compounds under consideration. Both the Knight shifts and quadrupolar coupling constants can be predicted based on element-specific increments.

20.
Chemphyschem ; 20(14): 1837-1849, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31127674

RESUMO

Four hydrogenated intramolecular phosphane-borane frustrated Lewis pair (B/P FLP) compounds bearing unsaturated cyclic or aromatic carbon backbones have been synthesized and structurally characterized using 11 B, 31 P, 1 H and 2 H solid-state NMR spectroscopy. A comparison of the spectra with those of the corresponding free B/P FLPs shows that both 11 B isotropic chemical shifts as well as nuclear electric quadrupolar coupling constants decrease significantly upon FLP hydrogenation, revealing the breakage of the partial B-P bond present in the starting materials. Likewise, the 31 P isotropic chemical shift, the chemical shift anisotropy, and the asymmetry parameter decrease significantly upon FLP hydrogenation, reflecting the formation of a more symmetric, C3v -like local environment. 11 B{31 P} rotational echo double resonance (REDOR) experiments can be used to measure the B-P internuclear distance (about 3.2 Å) of these compounds. Observation of the hydrogen atoms bound to the Lewis centers is best accomplished via 31 P{1 H} and 11 B{1 H} cross-polarization-heteronuclear correlation experiments or by direct observation of the 2 H MAS NMR signals on especially prepared FLP-D2 adducts. For accurately measuring the phosphorus-deuterium distance via 31 P{2 H} rotational echo adiabatic passage double resonance (REAPDOR), it is essential to take the secondary dipolar coupling of 31 P with the boron-bonded 2 H nuclei explicitly into consideration, by simulating a 2 HP -31 P-2 HB three-spin system based on structural input. All of the experimental NMR interaction parameters are found in excellent agreement with values calculated by DFT methods, using the geometries obtained either by energy optimization or from single-crystal structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...