Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2300, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485935

RESUMO

Optical driving of materials has emerged as a versatile tool to control their properties, with photo-induced superconductivity being among the most fascinating examples. In this work, we show that light or lattice vibrations coupled to an electronic interband transition naturally give rise to electron-electron attraction that may be enhanced when the underlying boson is driven into a non-thermal state. We find this phenomenon to be resonantly amplified when tuning the boson's frequency close to the energy difference between the two electronic bands. This result offers a simple microscopic mechanism for photo-induced superconductivity and provides a recipe for designing new platforms in which light-induced superconductivity can be realized. We discuss two-dimensional heterostructures as a potential test ground for light-induced superconductivity concretely proposing a setup consisting of a graphene-hBN-SrTiO3 heterostructure, for which we estimate a superconducting Tc that may be achieved upon driving the system.

2.
Phys Rev Lett ; 131(2): 023601, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505942

RESUMO

The hybridization between light and matter forms the basis to achieve cavity control over quantum materials. In this Letter we investigate a cavity coupled to a quantum chain of interacting spinless fermions by numerically exact solutions and perturbative analytical expansions. We draw two important conclusions about such systems: (i) Specific quantum fluctuations of the matter system play a pivotal role in achieving entanglement between light and matter; and (ii) in turn, light-matter entanglement is a key ingredient to modify electronic properties by the cavity. We hypothesize that quantum fluctuations of those matter operators to which the cavity modes couple are a general prerequisite for light-matter entanglement in the ground state. Implications of our findings for light-matter-entangled phases, cavity-modified phase transitions in correlated systems, and measurement of light-matter entanglement through Kubo response functions are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...